نتایج جستجو برای: monads in categories
تعداد نتایج: 16983354 فیلتر نتایج به سال:
Many homotopy-coherent algebraic structures can be described by Segal-type limit conditions determined an “algebraic pattern”, which we mean ?-category equipped with a factorization system and collection of “elementary” objects. Examples that occur as such “Segal O-spaces” for pattern O include ?-categories, (?,n)-categories, ?-operads (including symmetric, non-symmetric, cyclic, modular ones),...
We consider monads over varying categories, and by defining the morphisms of Kleisli and of Eilenberg-Moore from a monad to another and the appropriate transformations (2-cells) between morphisms of Kleisli and between morphisms of Eilenberg-Moore, we obtain two 2-categories MndKl and MndEM. Then we prove that MndKl and MndEM are, respectively, 2-isomorphic to the conjugate of Kl and to the tra...
We introduce the notion of an equational lifting monad: a commutative strong monad satisfying one additional equation (valid for monads arising from partial map classifiers). We prove that any equational lifting monad has a representation by a partial map classifier such that the Kleisli category of the former fully embeds in the partial category of the latter. Thus equational lifting monads pr...
Arrows have been introduced in functional programming as generalisations of monads. They also generalise comonads. Fundamental structures associated with (co)monads are Kleisli categories and categories of (Eilenberg-Moore) algebras. Hence it makes sense to ask if there are analogous structures for Arrows. In this short note we shall take first steps in this direction, and identify for instance...
Let A be a ring and MA the category of A-modules. It is well known in module theory that for any A-bimodule B, B is an A-ring if and only if the functor − ⊗A B : MA → MA is a monad (or triple). Similarly, an A-bimodule C is an A-coring provided the functor − ⊗A C : MA → MA is a comonad (or cotriple). The related categories of modules (or algebras) of −⊗A B and comodules (or coalgebras) of − ⊗A ...
Distributive laws between monads (triples) were defined by Jon Beck in the 1960s; see [1]. They were generalized to monads in 2-categories and noticed to be monads in a 2-category of monads; see [2]. Mixed distributive laws are comonads in the 2-category of monads [3]; if the comonad has a right adjoint monad, the mate of a mixed distributive law is an ordinary distributive law. Particular case...
New techniques for constructing a distributive law of a monad over another are studied using submonads, quotient monads, product monads, recursively-defined distributive laws, and linear equations. Sequel papers will consider distributive laws in closed categories and will construct monad approximations for compositions which fail to be a monad.
This article shows that the distributive laws of Beck in the bicategory of sets and matrices wherein monads are categories determine strict factorization systems on their composite monads Conversely it is shown that strict factorization systems on categories give rise to distributive laws Moreover these processes are shown to be mutually inverse in a precise sense Strict factorization systems a...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید