نتایج جستجو برای: n distance balanced graph
تعداد نتایج: 1380207 فیلتر نتایج به سال:
let $a = (a_{i,j})_{1 leq i,j leq n}$ be an $n times n$ matrixwhere $n geq 2$. let $dt(a)$, its second immanant be the immanant corresponding to the partition $lambda_2 = 2,1^{n-2}$. let $g$ be a connected graph with blocks $b_1, b_2, ldots b_p$ and with$q$-exponential distance matrix $ed_g$. we given an explicitformula for $dt(ed_g)$ which shows that $dt(ed_g)$ is independent of the manner in ...
0
The textit{metric dimension} of a connected graph $G$ is the minimum number of vertices in a subset $B$ of $G$ such that all other vertices are uniquely determined by their distances to the vertices in $B$. In this case, $B$ is called a textit{metric basis} for $G$. The textit{basic distance} of a metric two dimensional graph $G$ is the distance between the elements of $B$. Givi...
The Steiner distance of a graph, introduced by Chartrand, Oellermann, Tian and Zou in 1989, is a natural generalization of the concept of classical graph distance. For a connected graph $G$ of order at least $2$ and $Ssubseteq V(G)$, the Steiner distance $d(S)$ among the vertices of $S$ is the minimum size among all connected subgraphs whose vertex sets contain $S$. Let $...
It is shown that the graphs for which the Szeged index equals ‖G‖·|G| 2 4 are precisely connected, bipartite, distance-balanced graphs. This enables to disprove a conjecture proposed in [Some new results on distance-based graph invariants, European J. Combin. 30 (2009) 1149–1163]. Infinite families of counterexamples are based on the Handa graph, the Folkman graph, and the Cartesian product of ...
let $g$ be a connected graph with vertex set $v(g)$. the degree resistance distance of $g$ is defined as $d_r(g) = sum_{{u,v} subseteq v(g)} [d(u)+d(v)] r(u,v)$, where $d(u)$ is the degree of vertex $u$, and $r(u,v)$ denotes the resistance distance between $u$ and $v$. in this paper, we characterize $n$-vertex unicyclic graphs having minimum and second minimum degree resista...
The balanced Hamiltonian cycle problem is a quiet new topic of graph theorem. Given a graph G = (V, E), whose edge set can be partitioned into k dimensions, for positive integer k and a Hamiltonian cycle C on G. The set of all i-dimensional edge of C, which is a subset by E(C), is denoted as Ei(C). If ||Ei(C)| |Ej(C)|| 1 for 1 i < j k, C is called a balanced Hamiltonian cycle. In this paper, th...
Let $D$ be a diameter and $d_G(v_i, v_j)$ be the distance between the vertices $v_i$ and $v_j$ of a connected graph $G$. The complementary distance signless Laplacian matrix of a graph $G$ is $CDL^+(G)=[c_{ij}]$ in which $c_{ij}=1+D-d_G(v_i, v_j)$ if $ineq j$ and $c_{ii}=sum_{j=1}^{n}(1+D-d_G(v_i, v_j))$. The complementary transmission $CT_G(v)$ of a vertex $v$ is defined as $CT_G(v)=sum_{u in ...
For a graph G = (V,E) of even order, a partition (V1, V2) of the vertices is said to be perfectly balanced if |V1| = |V2| and the numbers of edges in the subgraphs induced by V1 and V2 are equal. For a base graph H define a random graph G(H, p) by turning every non-edge of H into an edge and every edge of H into a nonedge independently with probability p. We show that for any constant ǫ there i...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید