نتایج جستجو برای: non abelian subgroup
تعداد نتایج: 1399237 فیلتر نتایج به سال:
Skew morphisms, which generalise automorphisms for groups, provide a fundamental tool the study of regular Cayley maps and, more generally, finite groups with complementary factorisation $G=BY$, where $Y$ is cyclic and core-free in $G$. In this paper, we classify all examples $B$ monolithic (meaning that it has unique minimal normal subgroup, subgroup not abelian) As consequence, obtain classif...
Let $G$ be a group and $Aut(G)$ be the group of automorphisms of $G$. For any natural number $m$, the $m^{th}$-autocommutator subgroup of $G$ is defined as: $$K_{m} (G)=langle[g,alpha_{1},ldots,alpha_{m}] |gin G,alpha_{1},ldots,alpha_{m}in Aut(G)rangle.$$ In this paper, we obtain the $m^{th}$-autocommutator subgroup of all finite abelian groups.
A finite non-abelian group G is called metahamiltonian if every subgroup of either abelian or normal in G. If non-nilpotent, then the structure has been determined. nilpotent, determined by its Sylow subgroups. However, classification p-groups an unsolved problem. In this paper, are completely classified up to isomorphism.
in [u. dempwolff, on extensions of elementary abelian groups of order $2^{5}$ by $gl(5,2)$, textit{rend. sem. mat. univ. padova}, textbf{48} (1972), 359 - 364.] dempwolff proved the existence of a group of the form $2^{5}{^{cdot}}gl(5,2)$ (a non split extension of the elementary abelian group $2^{5}$ by the general linear group $gl(5,2)$). this group is the second l...
We call a Cayley digraph Γ = Cay(G,S) normal for G if R(G), the right regular representation of G, is a normal subgroup of the full automorphism group Aut(Γ) of Γ. In this paper we determine the normality of Cayley digraphs of valency 2 on the groups of order pq and also on non-abelian finite groups G such that every proper subgroup of G is abelian.
let $g$ be a group and $aut(g)$ be the group of automorphisms of$g$. for any naturalnumber $m$, the $m^{th}$-autocommutator subgroup of $g$ is definedas: $$k_{m}(g)=langle[g,alpha_{1},ldots,alpha_{m}] |gin g,alpha_{1},ldots,alpha_{m}in aut(g)rangle.$$in this paper, we obtain the $m^{th}$-autocommutator subgroup ofall finite abelian groups.
In this article we construct free groups and subgroups of finite index in the unit group of the integral group ring of a finite non-abelian group G for which every non-linear irreducible complex representation is of degree 2 and with commutator subgroup G′ a central elementary abelian 2-group.
We complete the proof of the Friedlander, Gordon and Miller Conjecture that every finite abelian group whose Sylow 2-subgroup either is trivial or both non-trivial and non-cyclic is R-sequenceable. This settles a question of Ringel for abelian groups.
Non–Abelian duality in relation to supersymmetry is examined. When the action of the isometry group on the complex structures is non–trivial, extended supersymmetry is realized non–locally after duality, using path ordered Wilson lines. Prototype examples considered in detail are, hyper–Kahler metrics with SO(3) isometry and supersymmetric WZW models. For the latter, the natural objects in the ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید