نتایج جستجو برای: nsga
تعداد نتایج: 2182 فیلتر نتایج به سال:
We present a multi-objective evolutionary algorithm to exploit a medium-sized fuzzy outranking relation to derive a partial order of classes of alternatives (we call it RP-NSGA-II). To measure the performance of RP-NSGA-II, we present an empirical study over a set of simulated multi-criteria ranking problems. The result of this study shows that RP-NSGA-II can effectively exploit a medium-sized ...
The automotive deployment problem is a real-world constrained multiobjective assignment problem in which software components must be allocated to processing units distributed around a car’s chassis. Prior work has shown that evolutionary algorithms such as NSGA-II can produce good quality solutions to this problem. This paper presents a population-based ant colony optimisation (PACO) approach t...
Portfolio optimization is a serious challenge for financial engineering and has pulled down special attention among investors. It has two objectives: to maximize the reward that is calculated by expected return and to minimize the risk. Variance has been considered as a risk measure. There are many constraints in the world that ultimately lead to a non–convex search space such as cardinality co...
This paper demonstrates that the self-adaptive technique of Differential Evolution (DE) can be simply used for solving a multiobjective optimization problem where parameters are interdependent. The real-coded crossover and mutation rates within the NSGA-II have been replaced with a simple Differential Evolution scheme, and results are reported on a rotated problem which has presented difficulti...
The evolutionary approach in the design optimisation of MEMS is a novel and promising research area. The problem is of a multi-objective nature; hence, multi-objective evolutionary algorithms (MOEA) are used. The literature shows that two main classes of MOEA have been used in MEMS evolutionary design Optimisation, NSGA-II and MOGA-II. However, no one has provided a justification for using eith...
This study presents a methodology for quantifying the tradeoffs between sampling costs and local concentration estimation errors in an existing groundwater monitoring network. The method utilizes historical data at a single snapshot in time to identify potential spatial redundancies within a monitoring network. Spatially redundant points are defined to be monitoring locations that do not apprec...
A multi-objective genetic algorithm is introduced to predict the assignment of protein solid-state NMR (SSNMR) spectra with partial resonance overlap and missing peaks due to broad linewidths, molecular motion, and low sensitivity. This non-dominated sorting genetic algorithm II (NSGA-II) aims to identify all possible assignments that are consistent with the spectra and to compare the relative ...
This paper proposes a mathematical model as the bi-objective capacitated multi-vehicle allocation of customers to distribution centers. An evolutionary algorithm named non-dominated sorting ant colony optimization (NSACO) is used as the optimization tool for solving this problem. The proposed methodology is based on a new variant of ant colony optimization (ACO) specialized in multi-objective o...
We compare the efficiency of the NSGA-II algorithm for the brachytherapy dose optimization problem with and without supporting solutions. A local search method enhances the efficiency of the algorithm. In comparison to a fast simulated annealing algorithm the supported hybrid NSGA-II algorithm provides much faster many non-dominated solutions. An archiving of all non-dominated solutions is usef...
Optimization of industrial styrene reactor design for two objectives using the non-dominated sorting genetic algorithm (NSGA) is studied. Both adiabatic and steam-injected reactors are considered. The two objectives are maximization of styrene production and styrene selectivity. The study shows that styrene reactor design can be optimized easily and reliably for two objectives by NSGA. It provi...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید