نتایج جستجو برای: polymer electrolyte fuel cell
تعداد نتایج: 1840700 فیلتر نتایج به سال:
Elevated-temperature (100~200 °C) polymer electrolyte membrane (PEM) fuel cells have many features, such as their high efficiency and simple system design, that make them ideal for residential micro-combined heat and power systems and as a power source for fuel cell electric vehicles. A proton-conducting solid-electrolyte membrane having high conductivity and durability at elevated temperatures...
The shape and geometry of the flow field have considerable effects on the transfer rate of the reactants toward the catalyst layer and consequently the performance of the polymer electrolyte membrane (PEM) fuel cell. In this study, a novel PEM fuel cell with pin-type flow field is proposed in order to reduce the wake regions, increase the oxygen transfer rate into the catalyst layer and the cur...
Polymer electrolyte membranes (PEM) and Pt-based catalysts are two crucial components which determine the properties and price of fuel cells. Even though, PEM faces problem of fuel crossover in liquid fuel cells such as direct methanol fuel cell (DMFC) and direct borohydride fuel cell (DBFC), which lowers power output greatly. Here, we report a DBFC in which a polymer fiber membrane (PFM) was u...
A new approach to elucidate the operation and control of Polymer Electrolyte Membrane (PEM) fuel cells is being developed. A global reactor engineering approach is applied to PEM fuel cells to identify the essential physics that govern the dynamics in PEM fuel cells. Reaction engineering principles are employed to develop a one-dimensional differential PEM fuel cell suitable for elucidating the...
The polymer electrolyte membrane fuel cell is a power source with the potential for reducing green-house gas emissions. Characterizing the electrolyte of a fuel cell is an important procedure for assessing the performance of the entire device. Atomic force microscopy (AFM) is one of the major instruments for such characterization, since it can be used for determining the surface potential and/o...
Electrochemistry on gases originated in 1839 with Grove's "gaseous voltaic battery". Over 90 years later, Bacon built a demonstration fuel cell consisting of porous nickel electrodes. He is credited with creating a stable three phase reaction zone of electrode, gas, and electrolyte. Today's fuel cell electrodes are far more sophisticated and lend themselves to other important electrochemical pr...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید