نتایج جستجو برای: primal dual problems
تعداد نتایج: 732141 فیلتر نتایج به سال:
This paper describes efficient algorithms for determining how buffer space should be allocated in a flow line. We analyze two problems: a primal problem, which minimizes total buffer space subject to a production rate constraint; and a dual problem, which maximizes production rate subject to a total buffer space constraint. The dual problem is solved by means of a gradient method, and the prima...
We view the optimal single commodity network flow problem with linear arc costs and its dual as a pair of monotropic programming problems, i.e. problems of minimizing the separable sum of scalar extended real-valued convex functions over a subspace. For such problems directions of cost improvement can be selected from among a finite set of directions--the elementary vectors of the constraint su...
An approach to determine primal and dual stepsizes in the infeasible{ interior{point primal{dual method for convex quadratic problems is presented. The approach reduces the primal and dual infeasibilities in each step and allows diierent stepsizes. The method is derived by investigating the eecient set of a multiobjective optimization problem. Computational results are also given.
We consider a Primal-Dual Augmented Lagrangian (PDAL) method for optimization problems with equality constraints. Each step of the PDAL requires solving the Primal-Dual linear system of equations. We show that under the standard second-order optimality condition the PDAL method generates a sequence, which locally converges to the primal-dual solution with quadratic rate.
Computational methods are proposed for solving a convex quadratic program (QP). Active-set methods are defined for a particular primal and dual formulation of a QP with general equality constraints and simple lower bounds on the variables. In the first part of the paper, two methods are proposed, one primal and one dual. These methods generate a sequence of iterates that are feasible with respe...
We consider empirical risk minimization of linear predictors with convex loss functions. Such problems can be reformulated as convex-concave saddle point problems, and thus are well suitable for primal-dual first-order algorithms. However, primal-dual algorithms often require explicit strongly convex regularization in order to obtain fast linear convergence, and the required dual proximal mappi...
Regularized empirical risk minimization problems are fundamental tasks in machine learning and data analysis. Many successful approaches for solving these problems are based on a dual formulation, which often admits more efficient algorithms. Often, though, the primal solution is needed. In the case of regularized empirical risk minimization, there is a convenient formula for reconstructing an ...
Motivated by practical numerical issues in a number of modeling and simulation problems, we introduce the notion of a compatible dual complex to a primal triangulation, such that a simplicial mesh and its compatible dual complex (made out of convex cells) form what we call a primal-dual triangulation. Using algebraic and computational geometry results, we show that compatible dual complexes exi...
In this paper we consider a general primal-dual nonlinear rescaling (PDNR) method for convex optimization with inequality constraints. We prove the global convergence of the PDNR method and estimate error bounds for the primal and dual sequences. In particular, we prove that, under the standard second-order optimality conditions the error bounds for the primal and dual sequences converge to zer...
In this work, we study two first-order primal-dual based algorithms, the Gradient Primal-Dual Algorithm (GPDA) and the Gradient Alternating Direction Method of Multipliers (GADMM), for solving a class of linearly constrained non-convex optimization problems. We show that with random initialization of the primal and dual variables, both algorithms are able to compute second-order stationary solu...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید