نتایج جستجو برای: proteomics and 2dg electrophoresis
تعداد نتایج: 16836465 فیلتر نتایج به سال:
The glucose analog 2-deoxyglucose (2DG) inhibits the growth of Saccharomyces cerevisiae and human tumor cells, but its modes of action have not been fully elucidated. Yeast cells lacking Snf1 (AMP-activated protein kinase) are hypersensitive to 2DG. Overexpression of either of two low-affinity, high-capacity glucose transporters, Hxt1 and Hxt3, suppresses the 2DG hypersensitivity of snf1Δ cells...
2-deoxy-D-glucose (2DG) is known as a synthetic inhibitor of glucose. 2DG regulates various cellular responses including proliferation, apoptosis and differentiation by regulation of glucose metabolism in cancer cells. However, the effects of 2DG in normal cells, including chondrocytes, are not clear yet. We examined the effects of 2DG on dedifferentiation with a focus on the beta-catenin pathw...
PROTEOMICSVolume 23, Issue 5 2370033 CONTENTSFree Access Contents: Proteomics 5'23 First published: 01 March 2023 https://doi.org/10.1002/pmic.202370033AboutRelatedInformationPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessClose modalShare full-text accessPlease review our Terms and Conditions of Use check box below share v...
Exposure to ionizing radiation is believed to cause cell injury via the production of free radicals that are thought to induce oxidative damage. It has been proposed that exposure to agents that enhance oxidative stress-induced injury by disrupting thiol metabolism may sensitize cells to the cytotoxic effects of ionizing radiation. Recently, it has been shown that glucose deprivation selectivel...
Tumor cell proliferation requires both growth signals and sufficient cellular bioenergetics. The AMP-activated protein kinase (AMPK) pathway seems dominant over the oncogenic signaling pathway suppressing cell proliferation. This study investigated the preclinical efficacy of targeting the tumor bioenergetic pathway using a glycolysis inhibitor 2-deoxyglucose (2DG) and AMPK agonists, AICAR and ...
Metabolic change in cancer cells by preferential production of energy through glycolysis is a well-documented characteristic of cancer. However, whether inhibition of glycolysis will enhance the efficacy of radiation therapy is a matter of debate. In this study which uses lung cancer as the model, we demonstrate that the improvement of radiotherapy by 2-deoxy-D-glucose (2DG) is p53-dependent. B...
Exposure to ionizing radiation is believed to cause cell injury via the production of free radicals that are thought to induce oxidative damage. It has been proposed that exposure to agents that enhance oxidative stressinduced injury by disrupting thiol metabolism may sensitize cells to the cytotoxic effects of ionizing radiation. Recently, it has been shown that glucose deprivation selectively...
Two-dimensional electrophoresis of proteins has preceded, and accompanied, the birth of proteomics. Although it is no longer the only experimental scheme used in modern proteomics, it still has distinct features and advantages. The purpose of this tutorial paper is to guide the reader through the history of the field, then through the main steps of the process, from sample preparation to in-gel...
PURPOSE The efficacy of solid tumor radioimmunotherapy is reduced by heterogeneous tumor distribution of the radionuclide, with dose mainly deposited in the normoxic region and by the relative radioresistance of hypoxic tumor cells. In an attempt to overcome these challenges, radioimmunotherapy was combined with 2-deoxy-d-glucose (2DG), a hypoxia-selective cytotoxic inhibitor of glucose metabol...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید