We consider decidability problems associated with Engel’s identity ([· · · [[x, y], y], . . . , y] = 1 for a long enough commutator sequence) in groups generated by an automaton. We give a partial algorithm that decides, given x, y, whether an Engel identity is satisfied. It succeeds, importantly, in proving that Grigorchuk’s 2-group is not Engel. We consider next the problem of recognizing Eng...