نتایج جستجو برای: roman 2 domination
تعداد نتایج: 2543014 فیلتر نتایج به سال:
A Roman dominating function on a graph G is a function f : V (G) → {0, 1, 2} satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. The weight of a Roman dominating function is the value f(V (G)) = ∑ u∈V (G) f(u). The Roman domination number γR(G) of G is the minimum weight of a Roman dominating function on G. In this paper, we s...
A Roman dominating function on a graphG is a function f : V (G) → {0, 1, 2} satisfying the condition that every vertex u ∈ V (G) for which f(u) = 0 is adjacent to at least one vertex v ∈ V (G) for which f(v) = 2. The weight of a Roman dominating function is the value f(V (G)) = ∑ u∈V (G) f(u). The Roman domination number γR(G) of G is the minimum weight of a Roman dominating function on G. A Ro...
a {em roman dominating function} on a graph $g$ is a function$f:v(g)rightarrow {0,1,2}$ satisfying the condition that everyvertex $u$ for which $f(u) = 0$ is adjacent to at least one vertex$v$ for which $f(v) =2$. {color{blue}a {em restrained roman dominating}function} $f$ is a {color{blue} roman dominating function if the vertices with label 0 inducea subgraph with no isolated vertex.} the wei...
A Roman dominating function on a graph G = (V, E) is a function f : V → {0, 1, 2} satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. The weight of a Roman dominating function is the value f(V ) = ∑ u∈V f(u). The minimum weight of a Roman dominating function on a graph G is called the Roman domination number of G. In this pape...
A Roman dominating function (RDF) on a graph G is a function f : V (G) → {0, 1, 2} satisfying the condition that every vertex v for which f(v) = 0, is adjacent to at least one vertex u for which f(u) = 2. The weight of a Roman dominating function f is the value f(V (G)) = ∑ v∈V (G) f(v). The Roman domination number of G, denoted by γR(G), is the minimum weight of an RDF on G. The Roman reinforc...
We analyze the graph-theoretic formalization of Roman domination, dating back to the military strategy of Emperor Constantine, from a parameterized perspective. More specifically, we prove that this problem is W[2]-complete for general graphs. However, parameterized algorithms are presented for graphs of bounded treewidth and for planar graphs. Moreover, it is shown that a parametric dual of Ro...
A Roman dominating function on a graph G = (V,E) is a function f : V → {0, 1, 2} satisfying the condition that every vertex u with f(u) = 0 is adjacent to at least one vertex v with f(v) = 2. The weight of a Roman dominating function is the value f(G) = ∑ u∈V f(u). The Roman domination number of G is the minimum weight of a Roman dominating function on G. The Roman bondage number of a nonempty ...
For a graph property P and a graph G, a subset S of the vertices of G is a P-set if the subgraph induced by S has the property P. A P-Roman dominating function on a graph G is a labeling f : V (G) → {0, 1, 2} such that every vertex with label 0 has a neighbor with label 2 and the set of all vertices with label 1 or 2 is a P-set. The P-Roman domination number γPR(G) of G is the minimum of Σv∈V (...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید