نتایج جستجو برای: rubisco

تعداد نتایج: 1869  

Journal: :Plant & cell physiology 2012
Hiroshi Fukayama Chiaki Ueguchi Kaoru Nishikawa Nobuaki Katoh Chie Ishikawa Chisato Masumoto Tomoko Hatanaka Shuji Misoo

The effects of overexpression of Rubisco activase on photosynthesis were studied in transgenic rice expressing barley or maize Rubisco activase. Immunoblot and SDS-PAGE analyses showed that transgenic lines from both gene constructs expressed the foreign Rubisco activase at high levels. The activation state of Rubisco in transgenic lines was slightly higher than that in non-transgenic plants (N...

Journal: :Plant physiology 1995
G. T. Byrd D. R. Ort W. L. Ogren

Photosynthesis rate, ribulsoe-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activation state, and ribulose bisphosphate concentration were reduced after exposing tomato (Lycopersicon esculentum Mill.) plants to light at 4[deg]C for 6 h. Analysis of lysed and reconsituted chloroplasts showed that activity of the thylakoid membrane was inhibited and that Rubisco, Rubisco activase, and other so...

Journal: :The Plant cell 2012
Leila Feiz Rosalind Williams-Carrier Katia Wostrikoff Susan Belcher Alice Barkan David B Stern

Most life is ultimately sustained by photosynthesis and its rate-limiting carbon fixing enzyme, ribulose-1,5-bis-phosphate carboxylase/oxygenase (Rubisco). Although the structurally comparable cyanobacterial Rubisco is amenable to in vitro assembly, the higher plant enzyme has been refractory to such manipulation due to poor understanding of its assembly pathway. Here, we report the identificat...

Journal: :Plant physiology 1989
J Kobza J R Seemann

The regulation of ribulose-1,5-bisphosphate (RuBP) carboxylase (Rubisco) activity and metabolite pool sizes in response to natural diurnal changes in photon flux density (PFD) was examined in three species (Phaseolus vulgaris, Beta vulgaris, and Spinacia oleracea) known to differ in the mechanisms used for this regulation. Diurnal regulation of Rubisco activity in P. vulgaris was primarily the ...

2017
Feiyan Liang Peter Lindblad

The ribulose-1,5-bisphosphate (RuBP) oxygenation reaction catalyzed by Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is competing with carboxylation, being negative for both energy and carbon balances in photoautotrophic organisms. This makes RuBisCO one of the bottlenecks for oxygenic photosynthesis and carbon fixation. In this study, RuBisCO was overexpressed in the unicellular cy...

Journal: :Proceedings of the National Academy of Sciences of the United States of America 2000
R G Jensen

T enzyme Rubisco, short for ribulose1,5-bisphosphate carboxylaseyoxygenase, is the enzyme that incorporates CO2 into plants during photosynthesis. As it constitutes about 30% of the total protein in a plant leaf, Rubisco is probably the most abundant protein on earth and a major sink for plant nitrogen. Rubisco is widely accepted as the ultimate rate-limiting step in photosynthetic carbon fixat...

Journal: :FEBS letters 1991
V L Tsuprun E J Boekema T G Samsonidze A V Pushkin

The structure of ribulose-1,5-bisphosphate carboxylase (Rubisco) subunit-binding protein and its interaction with pea leaf chloroplast Rubisco were studied by electron microscopy and image analysis. Electron-microscopic evidence for the association of Rubisco subunit-binding protein, consisting of 14 subunits arranged with 72 point group symmetry, and oligomeric (L8S8) Rubisco was obtained.

Journal: :Plant physiology 2005
Susanne von Caemmerer L Hendrickson V Quinn N Vella A G Millgate R T Furbank

To function, the catalytic sites of Rubisco (EC 4.1.1.39) need to be activated by the reversible carbamylation of a lysine residue within the sites followed by rapid binding of magnesium. The activation of Rubisco in vivo requires the presence of the regulatory protein Rubisco activase. This enzyme is thought to aid the release of sugar phosphate inhibitors from Rubisco's catalytic sites, there...

Journal: :Journal of experimental botany 2008
Joaquín Moreno María Jesús García-Murria Julia Marín-Navarro

Treatment of purified Rubisco with agents that specifically oxidize cysteine-thiol groups causes catalytic inactivation and increased proteolytic sensitivity of the enzyme. It has been suggested that these redox properties may sustain a mechanism of regulating Rubisco activity and turnover during senescence or stress. Current research efforts are addressing the structural basis of the redox mod...

Journal: :Applied and environmental microbiology 2013
Xue Guo Huaqun Yin Jing Cong Zhimin Dai Yili Liang Xueduan Liu

The enzyme responsible for carbon dioxide fixation in the Calvin cycle, ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO), is always detected as a phylogenetic marker to analyze the distribution and activity of autotrophic bacteria. However, such an approach provides no indication as to the significance of genomic content and organization. Horizontal transfers of RubisCO genes occurring...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید