نتایج جستجو برای: scale space random field
تعداد نتایج: 1946874 فیلتر نتایج به سال:
This paper investigates automatic detection of different types of self-repairs in spontaneous speech under different social contexts, from casual conversations to government hearings. The work shows that a simple CRF-based model is effective for cross-domain training, which is important for contexts where annotated data is not available. The approach explicitly represents common types of disflu...
there are many approaches for solving variety combinatorial optimization problems (np-compelete) that devided to exact solutions and approximate solutions. exact methods can only be used for very small size instances due to their expontional search space. for real-world problems, we have to employ approximate methods such as evolutionary algorithms (eas) that find a near-optimal solution in a r...
image segmentation is an important task in image processing and computer vision which attract many researchers attention. there are a couple of information sets pixels in an image: statistical and structural information which refer to the feature value of pixel data and local correlation of pixel data, respectively. markov random field (mrf) is a tool for modeling statistical and structural inf...
Subsurface fluid flow and solute transport take place in a multiscale heterogeneous environment. Neither these phenomena nor their host environment can be observed or described with certainty at all scales and locations of relevance. The resulting ambiguity has led to alternative conceptualizations of flow and transport and multiple ways of addressing their scale and space–time dependencies. We...
We describe a new technique for computing lower-bounds on the minimum energy configuration of a planar Markov Random Field (MRF). Our method successively adds large numbers of constraints and enforces consistency over binary projections of the original problem state space. These constraints are represented in terms of subproblems in a dual-decomposition framework that is optimized using subgrad...
Multi-sensor state space models underpin fusion applications in networks of sensors. Estimation of latent parameters in these models has the potential to provide highly desirable capabilities such as network self-calibration. Conventional solutions to the problem pose difficulties in scaling with the number of sensors due to the joint multi-sensor filtering involved when evaluating the paramete...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید