نتایج جستجو برای: signed total roman k domination number
تعداد نتایج: 2157122 فیلتر نتایج به سال:
Let $D$ be a finite simple digraph with vertex set $V(D)$ and arcset $A(D)$. A twin signed total Roman dominating function (TSTRDF) on thedigraph $D$ is a function $f:V(D)rightarrow{-1,1,2}$ satisfyingthe conditions that (i) $sum_{xin N^-(v)}f(x)ge 1$ and$sum_{xin N^+(v)}f(x)ge 1$ for each $vin V(D)$, where $N^-(v)$(resp. $N^+(v)$) consists of all in-neighbors (resp.out-neighbors) of $v$, and (...
Let k ≥ 1 be an integer. A signed Roman k-dominating function on a digraph D is a function f : V (D) −→ {−1, 1, 2} such that ∑x∈N−[v] f(x) ≥ k for every v ∈ V (D), where N−[v] consists of v and all in-neighbors of v, and every vertex u ∈ V (D) for which f(u) = −1 has an in-neighbor w for which f(w) = 2. A set {f1, f2, . . . , fd} of distinct signed Roman k-dominating functions on D with the pro...
For any integer $kgeq 1$ and any graph $G=(V,E)$ with minimum degree at least $k-1$, we define a function $f:Vrightarrow {0,1,2}$ as a Roman $k$-tuple dominating function on $G$ if for any vertex $v$ with $f(v)=0$ there exist at least $k$ and for any vertex $v$ with $f(v)neq 0$ at least $k-1$ vertices in its neighborhood with $f(w)=2$. The minimum weight of a Roman $k$-tuple dominatin...
Let k be a positive integer, and let G be a simple graph with vertex set V (G). A k-distance Roman dominating function on G is a labeling f : V (G) → {0, 1, 2} such that for every vertex with label 0, there is a vertex with label 2 at distance at most k from each other. The weight of a k-distance Roman dominating function f is the value ω(f) = ∑ v∈V f(v). The k-distance Roman domination number ...
a {em roman dominating function} on a graph $g$ is a function$f:v(g)rightarrow {0,1,2}$ satisfying the condition that everyvertex $u$ for which $f(u) = 0$ is adjacent to at least one vertex$v$ for which $f(v) =2$. {color{blue}a {em restrained roman dominating}function} $f$ is a {color{blue} roman dominating function if the vertices with label 0 inducea subgraph with no isolated vertex.} the wei...
Roman domination is a historically inspired variety of general domination such that every vertex is labeled with labels from {0, 1, 2}. Roman domination number is the smallest of the sums of labels fulfilling condition that every vertex, labeled 0, has a neighbor, labeled 2. Using algebraic approach we give O(C) time algorithm for computing Roman domination number of special classes of polygrap...
Let G be a simple graph without isolated vertices with vertex set V (G) and edge set E(G) and let k be a positive integer. A function f : E(G) −→ {±1,±2, . . . ,±k} is said to be a signed star {k}-dominating function on G if ∑ e∈E(v) f(e) ≥ k for every vertex v of G, where E(v) = {uv ∈ E(G) | u ∈ N(v)}. The signed star {k}-domination number of a graph G is γ{k}SS(G) = min{ ∑ e∈E f(e) | f is a S...
Let k ≥ 1 be an integer, and let D = (V, A) be a finite and simple digraph in which dD(v) ≥ k for all v ∈ V . A function f : V −→ {−1, 1} is called a signed total k-dominating function (STkDF) if f(N−(v)) ≥ k for each vertex v ∈ V . The weight w(f) of f is defined by w(f) = ∑ v∈V f(v). The signed total k-domination number for a digraph D is γ kS(D) = min{w(f) | f is a STkDF of D}. In this paper...
In this work, we study the signed Roman domination number of the join of graphs. Specially, we determine it for the join of cycles, wheels, fans, and friendship graphs.
A caterpillar is a tree with the property that after deleting all its vertices of degree 1 a simple path is obtained. The signed 2-domination number γ s (G) and the signed total 2-domination number γ st(G) of a graph G are variants of the signed domination number γs(G) and the signed total domination number γst(G). Their values for caterpillars are studied.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید