نتایج جستجو برای: sinc method
تعداد نتایج: 1631077 فیلتر نتایج به سال:
In this paper, Solvability nonlinear Volterra integral equations with general vanishing delays is stated. So far sinc methods for approximating the solutions of Volterra integral equations have received considerable attention mainly due to their high accuracy. These approximations converge rapidly to the exact solutions as number sinc points increases. Here the numerical solution of nonlinear...
Sinc-collocation scheme is one of the new techniques used in solving numerical problems involving integral equations. This method has been shown to be a powerful numerical tool for finding fast and accurate solutions. So, in this paper, some properties of the Sinc-collocation method required for our subsequent development are given and are utilized to reduce integral equation of the first kind ...
Spectral approximations for ODEs in unbounded domains have only received limited attention. In many applicable problems, singular initial value problems arise. In solving these problems, most of numerical methods have difficulties and often could not pass the singular point successfully. In this paper, we apply the sinc-collocation method for solving singular initial value problems. The ability...
A new algorithm is presented for solving Troesch’s problem. The numerical scheme based on the sinc-collocation technique is deduced. The equation is reduced to systems of nonlinear algebraic equations. Some numerical experiments are made. Compared with the modified homotopy perturbation technique (MHP), the variational iteration method and the Adomian decomposition method. It is shown that the ...
There are few techniques available to numerically solve contaminant transport equation. In this paper we show that the Sinc-Galerkin method is a very effective tool in numerically solving contaminant transport equation. The numerical results demonstrate the reliability and efficiency of using the Sinc-Galerkin method to solve such problems.
A collocation procedure is developed for the linear and nonlinear Volterra integral equations, using the globally defined Sinc and auxiliary basis functions. We analytically show the exponential convergence of the Sinc collocation method for approximate solution of Volterra integral equations. Numerical examples are included to confirm applicability and justify rapid convergence of our method.
in this paper, the sinc collocation method is proposed for solving linear and nonlinear multi-order fractional differential equations based on the new definition of fractional derivative which is recently presented by khalil, r., al horani, m., yousef, a. and sababeh, m. in a new definition of fractional derivative, j. comput. appl. math. 264 (2014), 65{70. the properties of sinc functions are ...
The aim of this paper is to present a new numerical method for solving the Bagley-Torvik equation. This equation has an important role in fractional calculus. The fractional derivatives are described based on the Caputo sense. Some properties of the sinc functions required for our subsequent development are given and are utilized to reduce the computation of solution of the Bagley-Torvik equati...
Sinc-Galerkin method based upon double exponential transformation for solving Troesch's problem was given in this study. Properties of the Sinc-Galerkin approach were utilized to reduce the solution of nonlinear two-point boundary value problem to same nonlinear algebraic equations, also, the matrix form of the nonlinear algebraic equations was obtained.The error bound of the method was found. ...
In this paper, a numerical procedure for solving a class of nonlinear VolterraFredholm integral equations is presented. The method is based upon the globally defined sinc basis functions. Properties of the sinc procedure are utilized to reduce the computation of the nonlinear integral equations to some algebraic equations. Illustrative examples are included to demonstrate the validity and appli...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید