نتایج جستجو برای: skew eigenvalue

تعداد نتایج: 27037  

2017
Qian Zhang Xuezhong Wang

This paper proposes neural network for computing the eigenvectors of Hermitian matrices. For the eigenvalues of Hermitian matrices, we establish an explicit representation for the solution of the neural network based on Hermitian matrices and analyze its convergence property. We also consider to compute the eigenvectors of skew-symmetric matrices and skew-Hermitian matrices, corresponding to th...

Journal: :SIAM J. Matrix Analysis Applications 2008
Alan J. Laub Jianlin Xia

We present a fast condition estimation algorithm for the eigenvalues of a class of structured matrices. These matrices are low rank modifications to Hermitian, skew-Hermitian, and unitary matrices. Fast structured operations for these matrices are presented, including Schur decomposition, eigenvalue block swapping, matrix equation solving, compact structure reconstruction, etc. Compact semisepa...

Journal: :SIAM J. Matrix Analysis Applications 2008
Tsung-Ming Huang Wen-Wei Lin Jiang Qian

In this paper, based on Patel’s algorithm (1993), we proposed a structure-preserving algorithm for solving palindromic quadratic eigenvalue problems (QEPs). We also show the relationship between the structure-preserving algorithm and the URV-based structure-preserving algorithm by Schröder (2007). For large sparse palindromic QEPs, we develop a generalized >skew-Hamiltonian implicity-restarted ...

Journal: :Analysis & PDE 2021

We consider large Hermitian matrices whose entries are defined by evaluating the exponential function along orbits of skew-shift $\binom{j}{2} \omega+jy+x \mod 1$ for irrational $\omega$. prove that eigenvalue distribution these converges to corresponding from random matrix theory on global scale, namely, Wigner semicircle law square and Marchenko-Pastur rectangular matrices. The results eviden...

Journal: :SIAM Review 2001
Françoise Tisseur Karl Meerbergen

We survey the quadratic eigenvalue problem, treating its many applications, its mathematical properties, and a variety of numerical solution techniques. Emphasis is given to exploiting both the structure of the matrices in the problem (dense, sparse, real, complex, Hermitian, skew-Hermitian) and the spectral properties of the problem. We classify numerical methods and catalogue available software.

Journal: :CoRR 2011
Bernd Sturmfels Ngoc Mai Tran

The map which takes a square matrix to its tropical eigenvalue-eigenvector pair is piecewise linear. We determine the cones of linearity of this map. They are simplicial but they do not form a fan. Motivated by statistical ranking, we also study the restriction of that cone decomposition to the subspace of skew-symmetric matrices.

2000
F. Tisseur

We survey the quadratic eigenvalue problem, treating its many applications, its mathematical properties, and a variety of numerical solution techniques. Emphasis is given to exploiting both the structure of the matrices in the problem (dense, sparse, real, complex, Hermitian, skew-Hermitian) and the spectral properties of the problem. We classify the available choices of methods and catalogue a...

2007
Heinrich Voss

In 8] and 9] W. Mackens and the present author presented two generalizations of a method of Cybenko and Van Loan 4] for computing the smallest eigenvalue of a symmetric, positive deenite Toeplitz matrix. Taking advantage of the symmetry or skew symmetry of the corresponding eigenvector both methods are improved considerably.

2000
PETER BENNER RALPH BYERS HEIKE FASSBENDER VOLKER MEHRMANN G. W. Stewart

As will be shown in this paper, there always exists an R such that (1.1) holds. We present a stable O(n3) algorithm that computes an R that has the form of a permuted triangular matrix. Our motivation comes from eigenvalue problems with Hamiltonian structure. A matrix H ∈ R is said to be Hamiltonian if (JH) = JH and skew-Hamiltonian if (JH) = −JH . EXAMPLE 1. The study of corner singularities i...

2008
G. Akemann

Abstract. We calculate the average of two characteristic polynomials for the real Ginibre ensemble of asymmetric random matrices, and its chiral counterpart. Considered as quadratic forms they determine a skew-symmetric kernel from which all complex eigenvalue correlations can be derived. Our results are obtained in a very simple fashion without going to an eigenvalue representation, and are co...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید