نتایج جستجو برای: smart polymers
تعداد نتایج: 144747 فیلتر نتایج به سال:
By definition and general agreement, smart materials are materials that have properties which may be altered in a controlled fashion by stimuli, such as stress, temperature, moisture, pH, and electric or magnetic fields. There are numerous types of smart materials, some of which are already common. Examples include piezoelectric materials, which produce a voltage when stress is applied or vice ...
Thermoresponsive polymers are a class of “smart” materials that have the ability to respond to a change in temperature; a property that makes them useful materials in a wide range of applications and consequently attracts much scientific interest. This review focuses mainly on the studies published over the last 10 years on the synthesis and use of thermoresponsive polymers for biomedical appli...
"Smart" hydrogels are part of an emerging class of biomaterials that respond to multiple external stimuli. A range of thermoresponsive magnetic hydrogels is currently being developed for on-demand delivery of biomolecules for a range of biomedical applications, including therapeutic drug delivery, bioimaging, and regenerative engineering. In this review article, we explore different types of ma...
Potassium ion (K) is the most abundant intracellular metal ion in the body and plays an important role in biological activities. Fabrication of K recognition and response smart materials is of both scientific and technological interests for various applications. Recently, our group have developed a series kinds of K-recognizable responsive smart materials based on 15-crown-5 as K recognizing re...
Molecular imprinting is a method of inducing molecular recognition properties in synthetic polymers in response to the presence of a template species during formation of the three-dimensional structure of the polymer. The molecularly imprinted polymers (MIPs) prepared in this way have been termed "plastic antibodies" and combine the robustness of the polymer scaffold with binding properties mor...
For years, the field of drug delivery has focused on (1) controlling the release of a therapeutic and (2) targeting the therapeutic to a specific cell type. These research endeavors have concentrated mainly on the development of new degradable polymers and molecule-labeled drug delivery vehicles. Recent interest in biomaterials that respond to their environment have opened new methods to trigge...
Nasal drug delivery has now been recognized as a promising route for drug delivery due to its capability of transporting a drug to systemic circulation and central nervous system. Though nasal mucosa offers improved bioavailability and quick onset of action of the drug, main disadvantage associated with nasal drug delivery is mucocilliary clearance due to which drug particles get cleared from t...
The rapid advancement of biomedical research has led to many creative applications for biocompatible polymers. As modern medicine discerns more mechanisms, both of physiology and of pathophysiology, the approach to healing is to mimic, or if possible, to recreate the physiology of healthy functioning. Thus, the area of smart polymers for responsive drug delivery has evolved. The developments fa...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید