نتایج جستجو برای: symmetric polynomial
تعداد نتایج: 173437 فیلتر نتایج به سال:
We prove generalized arithmetic-geometric mean inequalities for quasi-means arising from symmetric polynomials. The inequalities are satisfied by all positive, homogeneous symmetric polynomials, as well as a certain family of nonhomogeneous polynomials; this family allows us to prove the following combinatorial result for marked square grids. Suppose that the cells of a n × n checkerboard are e...
In this paper we introduce a family of polynomials indexed by pairs of partitions and show that if these polynomials are self–orthogonal then the centre of the Iwahori–Hecke algebra of the symmetric group is precisely the set of symmetric polynomials in the Murphy operators.
We investigate the zeros of a family of hypergeometric polynomials Mn(x;β, c) = (β)n 2F1(−n,−x;β; 1 − 1c ), n ∈ N, known as Meixner polynomials, that are orthogonal on (0,∞) with respect to a discrete measure for β > 0 and 0 < c < 1. When β = −N , N ∈ N and c = p p−1 , the polynomials Kn(x; p,N) = (−N)n 2F1(−n,−x;−N ; 1 p ), n = 0, 1, . . . N , 0 < p < 1 are referred to as Krawtchouk polynomial...
σλ = |c T λi+j−i(Q− Fl+i−λi)|1≤i,j≤k. These determinants are variations of Schur polynomials, which we will call double Schur polynomials and denote sλ(x|y), where the two sets of variables are x = (x1, . . . , xk) and y = (y1, . . . , yn). (Here k ≤ n, and the length of λ is at most k.) Setting the y variables to 0, one recovers the ordinary Schur polynomials: sλ(x|0) = sλ(x). In fact, sλ(x|y)...
Multisymmetric polynomials are the r-fold diagonal invariants of the symmetric group Sn. Elementary multisymmetric polynomials are analogues of the elementary symmetric polynomials, in the multisymmetric setting. In this paper, we give a necessary and sufficient condition on a ring A for the algebra of multisymmetric polynomials with coefficients in A to be generated by the elementary multisymm...
An infeasible interior-point algorithm for mixed symmetric cone linear complementarity problems is proposed. Using the machinery of Euclidean Jordan algebras and Nesterov-Todd search direction, the convergence analysis of the algorithm is shown and proved. Moreover, we obtain a polynomial time complexity bound which matches the currently best known iteration bound for infeasible interior-point ...
0
where the coefficients are Legendre symbols, is called the p-th Fekete polynomial. In this paper the size of the Fekete polynomials on subarcs is studied. We prove essentially sharp bounds for the average value of |fp(z)| , 0 < q < ∞, on subarcs of the unit circle even in the cases when the subarc is rather small. Our upper bounds are matching with the lower bounds proved in a preceding paper f...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید