نتایج جستجو برای: upper triangular matrices

تعداد نتایج: 295430  

2008
ANNA MELNIKOV

Abstract. Let nn(C) be the algebra of strictly upper-triangular n × n matrices and X2 = {u ∈ nn(C) : u2 = 0} the subset of matrices of nilpotent order 2. Let Bn(C) be the group of invertible upper-triangular matrices acting on nn by conjugation. Let Bu be the orbit of u ∈ X2 with respect to this action. Let S2n be the subset of involutions in the symmetric group Sn. We define a new partial orde...

Journal: :Proceedings of the American Mathematical Society 2005

Journal: :Journal of Mathematical Analysis and Applications 2006

Journal: :Journal of Mathematical Analysis and Applications 2008

Journal: :Linear Algebra and its Applications 1983

Journal: :IJAC 2007
Mark Kambites

We consider the Krohn-Rhodes complexity of certain semigroups of upper triangular matrices over finite fields. We show that for any n > 1 and finite field k, the semigroups of all n × n upper triangular matrices over k and of all n × n unitriangular matrices over k have complexity n− 1. A consequence is that the complexity c > 1 of a finite semigroup places a lower bound of c+1 on the dimension...

2011
YUVAL PERES ALLAN SLY

We study a natural random walk over the upper triangular matrices, with entries in the field Z2, generated by steps which add row i + 1 to row i. We show that the mixing time of the lazy random walk is O(n) which is optimal up to constants. Our proof makes key use of the linear structure of the group and extends to walks on the upper triangular matrices over the fields Zq for q prime.

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید