نتایج جستجو برای: vertex pi index edge pi indices
تعداد نتایج: 632618 فیلتر نتایج به سال:
the padmakar-ivan (pi) index is a first-generation topological index (ti) based on sums overall edges between numbers of edges closer to one endpoint and numbers of edges closer to theother endpoint. edges at equal distances from the two endpoints are ignored. an analogousdefinition is valid for the wiener index w, with the difference that sums are replaced byproducts. a few other tis are discu...
The Wiener index of a connected graph G, denoted by W (G), is defined as 12 ∑ u,v∈V (G) dG(u, v). Similarly, the hyper-Wiener index of a connected graph G, denoted by WW (G), is defined as 1 2W (G) + 1 4 ∑ u,v∈V (G) dG(u, v). The vertex Padmakar-Ivan (vertex PI) index of a graph G is the sum over all edges uv of G of the number of vertices which are not equidistant from u and v. In this paper, ...
given a non-abelian finite group $g$, let $pi(g)$ denote the set of prime divisors of the order of $g$ and denote by $z(g)$ the center of $g$. thetextit{ prime graph} of $g$ is the graph with vertex set $pi(g)$ where two distinct primes $p$ and $q$ are joined by an edge if and only if $g$ contains an element of order $pq$ and the textit{non-commuting graph} of $g$ is the graph with the vertex s...
Let $G$ be a finite group. The prime graph of $G$ is a graph $Gamma(G)$ with vertex set $pi(G)$, the set of all prime divisors of $|G|$, and two distinct vertices $p$ and $q$ are adjacent by an edge if $G$ has an element of order $pq$. In this paper we prove that if $Gamma(G)=Gamma(G_2(5))$, then $G$ has a normal subgroup $N$ such that $pi(N)subseteq{2,3,5}$ and $G/Nequiv G_2(5)$.
The vertex PI index PI(G) = ∑ xy∈E(G)[nxy(x) + nxy(y)] is a distance-based molecular structure descriptor, where nxy(x) denotes the number of vertices which are closer to the vertex x than to the vertex y and which has been the considerable research in computational chemistry dating back to Harold Wiener in 1947. A connected graph is a cactus if any two of its cycles have at most one common ver...
The Padmakar–Ivan (PI) index of a graph G is defined as the sum of terms [mu(e) + mv(e)] over all edges of G, where e is an edge, connecting the vertices u and v, wheremu(e) is the number of edges of G lying closer to the vertex u than to the vertex v, and where mv(e) is defined analogously. The extremal values of the PI index are determined in the class of connected bipartite graphs with a giv...
the vertex-edge wiener index of a simple connected graph g is defined as the sum of distances between vertices and edges of g. two possible distances d_1(u,e|g) and d_2(u,e|g) between a vertex u and an edge e of g were considered in the literature and according to them, the corresponding vertex-edge wiener indices w_{ve_1}(g) and w_{ve_2}(g) were introduced. in this paper, we present exact form...
in this paper, we present some inequalities for the co-pi index involving the some topological indices, the number of vertices and edges, and the maximum degree. after that, we give a result for trees. in addition, we give some inequalities for the largest eigenvalue of the co-pi matrix of g.
the second multiplicative zagreb coindex of a simple graph $g$ is defined as: $${overline{pi{}}}_2left(gright)=prod_{uvnotin{}e(g)}d_gleft(uright)d_gleft(vright),$$ where $d_gleft(uright)$ denotes the degree of the vertex $u$ of $g$. in this paper, we compare $overline{{pi}}_2$-index with some well-known graph invariants such as the wiener index, schultz index, eccentric co...
the prime graph $gamma(g)$ of a group $g$ is a graph with vertex set $pi(g)$, the set of primes dividing the order of $g$, and two distinct vertices $p$ and $q$ are adjacent by an edge written $psim q$ if there is an element in $g$ of order $pq$. let $pi(g)={p_{1},p_{2},...,p_{k}}$. for $pinpi(g)$, set $deg(p):=|{q inpi(g)| psim q}|$, which is called the degree of $p$. we also set $d(g):...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید