نتایج جستجو برای: z_k magic graph
تعداد نتایج: 208216 فیلتر نتایج به سال:
Let G be a subdivision of a ladder graph. In this paper we study magic evaluation with type (1, 1, 1) for a given any general ladder graph G. We prove that subdivided ladder admits magic evaluation having type (1, 1, 1). We also prove such a subdivision admits consecutive magic evaluation having type (1, 1, 0). AMS (MOS) Subject Classification Codes: 05C78
An anti-magic labeling of a finite simple undirected graph with p vertices and q edges is a bijection from the set of edges to the set of integers {1, 2, ..., q} such that the vertex sums are pairwise distinct, where the vertex sum at vertex u is the sum of labels of all edges incident to such vertex. A graph is called anti-magic if it admits an antimagic labeling. Hartsfield and Ringel conject...
where E(v) is the set of edges that have v as an end-point. The total labelling λ of G is vertex-magic if every vertex has the same weight, and the graph G is vertexmagic if a vertex-magic total labelling of G exists. Magic labellings of graphs were introduced by Sedlácěk [5] in 1963, and vertex-magic total labellings first appeared in 2002 in [4]. For a dynamic survey of various forms of graph...
An H-magic labeling in an H-decomposable graph G is a bijection f : V (G)∪E(G)→ {1, 2, . . . , p+ q} such that for every copy H in the decomposition, ∑ v∈V (H) f(v)+ ∑ e∈E(H) f(e) is constant. The function f is said to be H-E-super magic if f(E(G)) = {1, 2, . . . , q}. In this paper, we study some basic properties of m-factor-E-super magic labeling and we provide a necessary and sufficient cond...
A graph G is said to be A-magic if there is a labeling l : E(G) −→ A − {0} such that for each vertex v, the sum of the labels of the edges incident with v are all equal to the same constant; that is, l+(v) = c for some fixed c ∈ A. In general, a graph G may admit more than one labeling to become A-magic; for example, if |A| > 2 and l : E(G) −→ A − {0} is a magic labeling of G with sum c, then l...
For any h ∈ N, a graph G = (V, E) is said to be h-magic if there exists a labeling l : E(G) → Zh−{0} such that the induced vertex labeling l+ : V (G) → Zh defined by l(v) = ∑ uv∈E(G) l(uv) is a constant map. When this constant is 0 we call G a zero-sum h-magic graph. The null set of G is the set of all natural numbers h ∈ N for which G admits a zero-sum h-magic labeling. A graph G is said to be...
For any h ∈ IN , a graph G = (V, E) is said to be h-magic if there exists a labeling l : E(G) −→ ZZ h − {0} such that the induced vertex set labeling l : V (G) −→ ZZ h defined by l(v) = ∑ uv∈E(G) l(uv) is a constant map. For a given graph G, the set of all h ∈ ZZ + for which G is h-magic is called the integer-magic spectrum of G and is denoted by IM(G). The concept of integer-magic spectrum of ...
An anti-magic labeling of a finite simple undirected graph with p vertices and q edges is a bijection from the set of edges to the integers {1, ..., q} such that all p vertex sums are pairwise distinct, where the vertex sum on a vertex is the sum of labels of all edges incident to such vertex. A graph is called anti-magic if it has an anti-magic labeling. Hartsfield and Ringel [3] conjectured t...
Let A be an abelian group. We call a graph G = (V,E) A–magic if there exists a labeling f : E(G) → A− {0} such that the induced vertex set labeling f+ : V (G) → A, defined by f+(v) = Σf(u, v) where the sum is over all (u, v) ∈ E(G), is a constant map. For four classical products, we examine the A–magic property of the resulting graph obtained from the product of two A–magic graphs.
For any k ∈ N, a graph G = (V, E) is said to be Zk-magic if there exists a labeling l : E(G) → Zk − {0} such that the induced vertex set labeling l : V (G) → Zk defined by l(v) = ∑ uv∈E(G) l(uv) is a constant map. For a given graph G, the set of all k ∈ N for which G is Zk-magic is called the integer-magic spectrum of G and is denoted by IM(G). In this paper we will consider the functional exte...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید