نتایج جستجو برای: zariski topology

تعداد نتایج: 68387  

Journal: :Sakarya University Journal of Science 2019

Journal: :Topology and its Applications 2011

2001
Edward S. Letzter EDWARD S. LETZTER

Let R be an associative ring with identity. We study an elementary generalization of the classical Zariski topology, applied to the set of isomorphism classes of simple left Rmodules (or, more generally, simple objects in a complete abelian category). Under this topology the points are closed, and when R is left noetherian the corresponding topological space is noetherian. If R is commutative (...

Journal: :bulletin of the iranian mathematical society 2011
m. behboodi m. j. noori

‎‎Let $R$ be a commutative ring with identity and let $M$ be an $R$-module‎. ‎We define the primary spectrum of $M$‎, ‎denoted by $mathcal{PS}(M)$‎, ‎to be the set of all primary submodules $Q$ of $M$ such that $(operatorname{rad}Q:M)=sqrt{(Q:M)}$‎. ‎In this paper‎, ‎we topologize $mathcal{PS}(M)$ with a topology having the Zariski topology on the prime spectrum $operatorname{Spec}(M)$ as a sub...

Journal: :Fuzzy Sets and Systems 2008
Reza Ameri R. Mahjoob

Let L be a complete lattice. We introduce and characterize the prime L-submodules of a unitary module over a commutative ring with identity. Finally, we investigate the Zariski topology on the prime L-Spectrum of a unitary module, consisting of the collection of all prime L-submodules, and prove that for L-top modules the Zariski topology on L-Spec(M) exists. © 2007 Elsevier B.V. All rights res...

Journal: :Applied Categorical Structures 2007

Journal: :Mathematische Zeitschrift 2023

Let $f \colon X \to X$ be a surjective endomorphism of normal projective surface. When $\operatorname{deg} f \geq 2$, applying an (iteration of) $f$-equivariant minimal model program (EMMP), we determine the geometric structure $X$. Using this, extend second author's result to singular surfaces extent that either $X$ has $f$-invariant non-constant rational function, or $f$ infinitely many Zaris...

2003
Franz-Viktor Kuhlmann

We consider the Zariski space of all places of an algebraic function field F |K of arbitrary characteristic and investigate its structure by means of its patch topology. We show that certain sets of places with nice properties (e.g., prime divisors, places of maximal rank, zerodimensional discrete places) lie dense in this topology. Further, we give several equivalent characterizations of field...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید