نتایج جستجو برای: zero product preserving map
تعداد نتایج: 654114 فیلتر نتایج به سال:
Let X,Y be locally compact Hausdorff spaces and M,N be Banach algebras. Let θ : C0(X,M) → C0(Y,N ) be a zero-product preserving bounded linear map with dense range. We show that θ is given by a continuous field of algebra homomorphisms from M into N if N is irreducible. As corollaries, such a surjective θ arises from an algebra homomorphism, provided thatM is a W*-algebra and N is a semi-simple...
We propose a new approach to analyzing dynamical systems that combine hyperbolic and non-hyperbolic (“center”) behavior, e.g. partially hyperbolic diffeomorphisms. A number of applications illustrate its power. We find that any ergodic automorphism of the 4-torus with two eigenvalues in the unit circle is stably Bernoulli among symplectic maps. Indeed, any nearby symplectic map has no zero Lyap...
In this paper we investigate the Lipschitz equivalence of dust-like self-similar sets in Rd. One of the fundamental results by Falconer and Marsh [On the Lipschitz equivalence of Cantor sets, Mathematika, 39 (1992), 223– 233] establishes conditions for Lipschitz equivalence based on the algebraic properties of the contraction ratios of the self-similar sets. In this paper we extend the study by...
amonge other things we give sufficient and necessary conditions for the lau product of banachalgebras to be biflat or biprojective.
In 2003, Araujo and Jarosz showed that every bijective linear map θ : A → B between unital standard operator algebras preserving zero products in two ways is a scalar multiple of an inner automorphism. Later in 2007, Zhao and Hou showed that similar results hold if both A,B are unital standard algebras on Hilbert spaces and θ preserves range or domain orthogonality. In particular, such maps are...
let $mathcal{a}$ and $mathcal{b}$ be two $c^{*}$-algebras such that $mathcal{b}$ is prime. in this paper, we investigate the additivity of maps $phi$ from $mathcal{a}$ onto $mathcal{b}$ that are bijective, unital and satisfy $phi(ap+eta pa^{*})=phi(a)phi(p)+eta phi(p)phi(a)^{*},$ for all $ainmathcal{a}$ and $pin{p_{1},i_{mathcal{a}}-p_{1}}$ where $p_{1}$ is a nontrivial projection in $mathcal{a...
Let Ω ⊂ R be a bounded Lipschitz domain and consider the Dirichlet energy functional F[u,Ω] := 1 2 Z
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید