نتایج جستجو برای: 2 absorbing submodule

تعداد نتایج: 2535833  

Journal: :Int. J. Math. Mathematical Sciences 2005
Yongduo Wang

In this paper, all rings are associative with identity and all modules are unital left modules unless otherwise specified. Let R be a ring and M a module. N ≤M will mean N is a submodule of M. A submodule E of M is called essential in M (notation E ≤e M) if E∩A = 0 for any nonzero submodule A of M. Dually, a submodule S of M is called small in M (notation S M) if M = S+T for any proper submodul...

Journal: :Analele Universitatii "Ovidius" Constanta - Seria Matematica 2020

2000
A. A. BARANOV

In this paper branching rules for the fundamental representations of the symplectic groups in positive characteristic are found. The submodule structure of the restrictions of the fundamental modules for the group Sp2n(K) to the naturally embedded subgroup Sp2n−2(K) is determined. As a corollary, inductive systems of fundamental representations for Sp∞(K) are classified. The submodule structure...

2017
Xin Huang Kai Zhang Jingbo Kan Jian Xiong

The modular multilevel converter (MMC) is receiving extensive research interests in high/medium voltage applications due to its modularity, scalability, reliability, high voltage capability and excellent harmonic performance. The submodule capacitors are usually quite bulky since they have to withstand fundamental frequency voltage fluctuations. To reduce the capacitance of these capacitors, th...

Journal: :journal of algebra and related topics 2015
r. beyranvand f. moradi

let $r$ be an arbitrary ring and $t$ be a submodule of an $r$-module $m$. a submodule $n$ of $m$ is called $t$-small in $m$ provided for each submodule $x$ of $m$, $tsubseteq x+n$ implies that $tsubseteq x$. we study this mentioned notion which is a generalization of the small submodules and we obtain some related results.

Journal: :bulletin of the iranian mathematical society 0
t. amouzegar kalati mazandaran university, department of mathematic d. keskin tutuncu hacettepe university, mathematics department

let $m_r$ be a module with $s=end(m_r)$. we call a submodule $k$ of $m_r$ annihilator-small if $k+t=m$, $t$ a submodule of $m_r$, implies that $ell_s(t)=0$, where $ell_s$ indicates the left annihilator of $t$ over $s$. the sum $a_r(m)$ of all such submodules of $m_r$ contains the jacobson radical $rad(m)$ and the left singular submodule $z_s(m)$. if $m_r$ is cyclic, then $a_r(m)$ is the unique ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید