نتایج جستجو برای: abelian groupoid
تعداد نتایج: 21994 فیلتر نتایج به سال:
Let A be an abelian variety,  be the dual abelian variety. The Fourier-Mukai transform is an equivalence between the derived categories of coherent sheaves Db(A) and Db(Â). Notice that there is a ”symplectic” line bundle LA on (Â×A)2, namely, LA = p14P⊗√∈∋P where P is the Poincaré line bundle on Â×A, such that the standard embeddings A ⊂ Â×A and  ⊂ Â×A are ”lagrangian” with respect to LA, i.e...
The Fourier and Fourier-Stieltjes algebras A(G) and B(G) of a locally compact group G are introduced and studied in 60’s by Piere Eymard in his PhD thesis. If G is a locally compact abelian group, then A(G) ≃ L(Ĝ), and B(G) ≃ M(Ĝ), via the Fourier and Fourier-Stieltjes transforms, where Ĝ is the Pontryagin dual of G. Recently these algebras are defined on a (topological or measured) groupoid an...
Ultragraphs give rise to labelled graphs. We realize algebras associated such graphs as groupoid algebras, generalizing a known algebra realization of ultragraph C*-algebras any ultragraph. Then, we characterize the shift space an tight spectrum inverse semigroup with via its graph. In purely algebraic setting, show that partial action used describe Leavitt path skew group ring is equivalent du...
The classical Hausdorff-Young inequality for locally compact abelian groups states that, for 1 ≤ p ≤ 2, the L-norm of a function dominates the L-norm of its Fourier transform, where 1/p + 1/q = 1. By using the theory of non-commutative L-spaces and by reinterpreting the Fourier transform, R. Kunze (1958) [resp. M. Terp (1980)] extended this inequality to unimodular [resp. non-unimodular] groups...
A groupoid is a small category in which each morphism has an inverse. A topological groupoid is a groupoid in which both sets of objects and morphisms have topologies such that all maps of groupoid structure are continuous. The notion of monodromy groupoid of a topological groupoid generalizes those of fundamental groupoid and universal cover. It was earlier proved that the monodromy groupoid o...
Polar decomposition unquestionably provides a notion of factorization in the category of Hilbert spaces. But it does not fit existing categorical notions, mainly because its factors are not closed under composition. We observe that the factors are images of functors. This leads us to consider notions of factorization that emphasize reconstruction of the composite category from the factors. We f...
We introduce a new construction, the isotropy groupoid, to organize the orbit data for split Γ-spaces. We show that equivariant principal G-bundles over split Γ-CW complexes X can be effectively classified by means of representations of their isotropy groupoids. For instance, if the quotient complex A = Γ\X is a graph, with all edge stabilizers toral subgroups of Γ, we obtain a purely combinato...
We study the Nichols algebra of a semisimple Yetter-Drinfeld module and introduce new invariants including the notions of real roots and the Weyl groupoid. The crucial ingredient is a “reflection” defined on arbitrary such Nichols algebras. Our construction generalizes the restriction of Lusztig’s automorphisms of quantized Kac-Moody algebras to the nilpotent part. As a direct application we co...
We introduce a new construction, the isotropy groupoid, to organize the orbit data for split Γ-spaces. We show that equivariant principal G-bundles over split Γ-CW complexes X can be effectively classified by means of representations of their isotropy groupoids. For instance, if the quotient complex A = Γ\X is a graph, with all edge stabilizers toral subgroups of Γ, we obtain a purely combinato...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید