نتایج جستجو برای: adaptive neural network observer

تعداد نتایج: 1025786  

In this work, an artificial neural network (ANN) model along with a combination of adaptive neuro-fuzzy inference system (ANFIS) and particle swarm optimization (PSO) i.e. (PSO-ANFIS) are proposed for modeling and prediction of the propylene/propane adsorption under various conditions. Using these computational intelligence (CI) approaches, the input parameters such as adsorbent shape (S<su...

Introduction: Electrocardiogram (ECG) is a method to measure the electrical activity of the heart which is performed by placing electrodes on the surface of the body. Physicians use observation tools to detect and diagnose heart diseases, the same is performed on ECG signals by cardiologists. In particular, heart diseases are recognized by examining the graphic representation of heart signals w...

Abazar Solgi, Feridon Radmanesh Heidar Zarei Vahid Nourani

Awareness of the level of river flow and its fluctuations at different times is one of the significant factor to achieve sustainable development for water resource issues. Therefore, the present study two hybrid models, Wavelet- Adaptive Neural Fuzzy Interference System (WANFIS) and Wavelet- Artificial Neural Network (WANN) are used for flow prediction of Gamasyab River (Nahavand, Hamedan, Iran...

2012
Hana Boudjedir Omar Bouhali Nassim Rizoug

A neural network control scheme with an adaptive observer is proposed in this paper to Quadrotor helicopter stabilization. The unknown part in Quadrotor dynamical model was estimated on line by a Single Hidden Layer network. To solve the non measurable states problem a new adaptive observer was proposed. The main purpose here is to reduce the measurement noise amplification caused by convention...

2012
Mokhtar Zerikat Soufyane Chekroun

This paper presents an adaptive speed observer for an induction motor using an artificial neural network with a direct field-oriented control drive. The speed and rotor flux are estimated with the only assumption that from stator voltages and currents are measurable. The estimation algorithm uses a state observer combined with an intelligent adaptive mechanism based on a recurrent neural networ...

Abazar Solgi, Feridon Radmanesh Heidar Zarei Vahid Nourani

Awareness of the level of river flow and its fluctuations at different times is one of the significant factor to achieve sustainable development for water resource issues. Therefore, the present study two hybrid models, Wavelet- Adaptive Neural Fuzzy Interference System (WANFIS) and Wavelet- Artificial Neural Network (WANN) are used for flow prediction of Gamasyab River (Nahavand, Hamedan, Iran...

2013
Yu-Xiang Wu Jing Zhang Cong Wang

This study presents deterministic learning from adaptive neural control of unknown electrically-driven mechanical systems. An adaptive neural network system and a high-gain observer are employed to derive the controller. The stable adaptive tuning laws of network weights are derived in the sense of the Lyapunov stability theory. It is rigorously shown that the convergence of partial network wei...

Abazar Solgi, Behdad Falamarzi Heidar Zarei

Precipitation forecasting due to its random nature in space and time always faced with many problems and this uncertainty reduces the validity of the forecasting model. Nowadays nonlinear networks as intelligent systems to predict such complex phenomena are widely used. One of the methods that have been considered in recent years in the fields of hydrology is use of wavelet transform as a moder...

Journal: :journal of ai and data mining 2015
f. alibakhshi m. teshnehlab m. alibakhshi m. mansouri

the stability of learning rate in neural network identifiers and controllers is one of the challenging issues which attracts great interest from researchers of neural networks. this paper suggests adaptive gradient descent algorithm with stable learning laws for modified dynamic neural network (mdnn) and studies the stability of this algorithm. also, stable learning algorithm for parameters of ...

2000
B. Daâchi

In this paper we present an adaptive appoach to observe the joint velocity for rigid robot manipulators. This approach is based on the neural network and sliding mode technique. The adopted neural network is of the MLP (Multi Layer Perceptron) type with one hidden layer. The functions of the dynamic model of the robot manipulator are assumed unknown. The neural network parameters are adapted on...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید