نتایج جستجو برای: almost uniserial modules
تعداد نتایج: 256952 فیلتر نتایج به سال:
A module $$M$$ is said to be distributive (resp., uniserial) if the submodule lattice of a chain) Any uniserial but ring integers non-uniserial as $$\mathbb{Z}$$ -module. Direct sums (resp. modules are called semidistributive serial) modules. If $$A$$ with automorphism $$\varphi$$ , then we denote by $$A((x,\varphi))$$ skew Laurent series coefficient in which addition naturally defined and mult...
1. Let R be a ring with unity. An R-module M is said to be balanced or to have the double centralizer property, if the natural homomorphism from R to the double centralizer of M is surjective. If all left and right K-modules are balanced, R is called balanced. It is well known that every artinian uniserial ring is balanced. In [5], J. P. Jans conjectured that those were the only (artinian) bala...
let r be a ring, m a right r-module and (s,≤) a strictly ordered monoid. in this paper we will show that if (s,≤) is a strictly ordered monoid satisfying the condition that 0 ≤ s for all s ∈ s, then the module [[ms,≤]] of generalized power series is a uniserial right [[rs,≤]] ]]-module if and only if m is a simple right r-module and s is a chain monoid.
A right module M over an associative ring with unity is a QTAG-module if every finitely generated submodule of any homomorphic image of M is a direct sum of uniserial modules. In this paper we find a suitable condition under which a special ω-elongation of a summable QTAG-module by a ( ω +k)-projective QTAG-module is also a summable QTAG-module.
Let R be a ring, M a right R-module and (S,≤) a strictly ordered monoid. In this paper we will show that if (S,≤) is a strictly ordered monoid satisfying the condition that 0 ≤ s for all s ∈ S, then the module [[MS,≤]] of generalized power series is a uniserial right [[RS,≤]] ]]-module if and only if M is a simple right R-module and S is a chain monoid.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید