نتایج جستجو برای: c affine functions
تعداد نتایج: 1515161 فیلتر نتایج به سال:
Invariance with respect to linear or affine transformations of the domain is arguably the most common symmetry exhibited by natural algebraic properties. In this work, we show that any low complexity affine-invariant property of multivariate functions over finite fields is testable with a constant number of queries. This immediately reproves, for instance, that the Reed-Muller code over Fp of d...
These are (mostly) expository notes for lectures on affine Stanley symmetric functions given at the Fields Institute in 2010. We focus on the algebraic and combinatorial parts of the theory. The notes contain a number of exercises and open problems. Stanley symmetric functions are a family {Fw | w ∈ Sn} of symmetric functions indexed by permutations. They were invented by Stanley [Sta] to enume...
Affine invariant functions are constructed in spatial domain. Unlike the previous affine representation functions in transform domain, these functions are constructed directly on the object contour without any transformation. To eliminate the effect of the choice of points on the contour, an affine invariant function using seven points on the contour is constructed. For objects with several sep...
We construct counterexamples to the rationality conjecture regarding the new version of the Makar-Limanov invariant introduced in [Li2]. Let k be an algebraically closed field. Below variety means algebraic variety over k in the sense of Serre (so algebraic group means algebraic group over k). We use standard notation and conventions of [Bo] and [Sp]. In particular, given a variety X, we denote...
In 1912 Bieberbach proved that every compact flat Riemannian manifold M is finitely covered by a flat torus. More precisely, M has the form (F\G)/H where G is a group of translations of Euclidean space, F c G is a discrete subgroup, and H is a finite group of isometries of the space of right cosets F\G. For a proof see e.g. Wolf [18]. The condition that M has a flat Riemannian metric can be sep...
Let X be an infinite compact metric space with finite covering dimension. Let α, β : X → X be two minimal homeomorphisms. Suppose that the range of K0-groups of both crossed product C∗-algebras are dense in the space of real affine continuous functions. We show that α and β are approximately conjugate uniformly in measure if and only if they have affine homeomorphic invariant probability measur...
We introduce an algebra H consisting of difference-reflection operators and multiplication operators that can be considered as a q = 1 analogue of Sahi's double affine Hecke algebra related to the affine root system of type (C ∨ 1 , C1). We study eigenfunctions of a Dunkl-Cherednik-type operator in the algebra H, and the corresponding Fourier transforms. These eigenfunctions are non-symmetric v...
Outline of talk: My goal is to introduce a few more advanced topics in algebraic geometry but not to go into too much detail. This will be a survey of (1) Elimination Theory and review from last time (BRIEFLY) (a) History and goals (b) Geometric Extension Theorem (2) Invariant Theory (3) Dimension Theory (a) Krull Dimension (b) Hilbert Polynomial (c) Dimension of a variety (4) Syzygies (a) Defi...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید