نتایج جستجو برای: central pattern generator

تعداد نتایج: 834794  

Journal: :Journal of neurophysiology 2008
Olivier White Yannick Bleyenheuft Renaud Ronsse Allan M Smith Jean-Louis Thonnard Philippe Lefèvre

In many nonprimate species, rhythmic patterns of activity such as locomotion or respiration are generated by neural networks at the spinal level. These neural networks are called central pattern generators (CPGs). Under normal gravitational conditions, the energy efficiency and the robustness of human rhythmic movements are due to the ability of CPGs to drive the system at a pace close to its r...

Journal: :The Journal of experimental biology 2005
Stuart Thompson Winsor H Watson

The nudibranch mollusc Melibe leonina swims by bending from side to side. We have identified a network of neurons that appears to constitute the central pattern generator (CPG) for this locomotor behavior, one of only a few such networks to be described in cellular detail. The network consists of two pairs of interneurons, termed 'swim interneuron 1' (sint1) and 'swim interneuron 2' (sint2), ar...

2015
David Kleinfeld Martin Deschênes Jeffrey D. Moore

Whisking and sniffing are predominant aspects of exploratory behavior in rodents. We review evidence that these motor rhythms are coordinated by the respiratory patterning circuitry in the ventral medulla. A region in the intermediate reticular zone, dorsomedial to the preBötzinger inspiratory complex, provides rhythmic input to the facial motoneurons that drive protraction of the vibrissae. Ne...

2005
D. V. Vavoulis V. A. Straub G. Kemenes J. F. Feng P. R. Benjamin

Central Pattern Generators (CPGs) are small, rhythmically active networks, which control simple repetitive behaviours, in both vertebrates and invertebrates. Research on CPGs aims at understanding how the periodic pattern is generated and modulated, by investigating the intrinsic and synaptic properties of the component neurons. In this study, we present a mathematical, biophysically-realistic ...

2011
Robert Clewley

This paper illustrates an informatic technique for inferring and quantifying the dynamic role of a single intrinsic current in a mechanism of neural bursting activity. We analyze the patterns of the most dominant currents in a model of half-center oscillation in the leech heartbeat central pattern generator. We find that the patterns of dominance change substantially over a cycle, allowing diff...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید