نتایج جستجو برای: characteristic polynomial

تعداد نتایج: 268126  

Journal: :Combinatorica 2022

Form an $n \times n$ matrix by drawing entries independently from $\{\pm1\}$ (or another fixed nontrivial finitely supported distribution in $\mathbf{Z}$) and let $\phi$ be the characteristic polynomial. Conditionally on extended Riemann hypothesis, with high probability is irreducible $\mathrm{Gal}(\phi) \geq A_n$.

Journal: :Proceedings of the American Mathematical Society 1974

Journal: :Journal of Combinatorial Theory, Series A 2015

Journal: :Journal of Graph Algorithms and Applications 2014

Matrix functions are used in many areas of linear algebra and arise in numerical applications in science and engineering. In this paper, we introduce an effective approach for determining matrix function f(A)=g(q(A)) of a square matrix A, where q is a polynomial function from a degree of m and also function g can be a transcendental function. Computing a matrix function f(A) will be time- consu...

Journal: :transactions on combinatorics 0
gholam hossein fath-tabar university of kashan fatemeh taghvaee university of kashan

let $g$ be a simple graph‎, ‎and $g^{sigma}$‎ ‎be an oriented graph of $g$ with the orientation ‎$sigma$ and skew-adjacency matrix $s(g^{sigma})$‎. ‎the $k-$th skew spectral‎ ‎moment of $g^{sigma}$‎, ‎denoted by‎ ‎$t_k(g^{sigma})$‎, ‎is defined as $sum_{i=1}^{n}( ‎‎‎lambda_{i})^{k}$‎, ‎where $lambda_{1}‎, ‎lambda_{2},cdots‎, ‎lambda_{n}$ are the eigenvalues of $g^{sigma}$‎. ‎suppose‎ ‎$g^{sigma...

2011
YUBIN GAO YANLING SHAO

An n × n sign pattern matrix A is an inertially arbitrary pattern if for every nonnegative triple (n1, n2, n3) with n1 + n2 + n3 = n, there is a real matrix in the sign pattern class of A having inertia (n1, n2, n3). An n× n sign pattern matrix A is a spectrally arbitrary pattern if for any given real monic polynomial r(x) of degree n, there is a real matrix in the sign pattern class of A with ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید