نتایج جستجو برای: chebyshev and legendre polynomials
تعداد نتایج: 16838698 فیلتر نتایج به سال:
We construct an orthogonal wavelet basis for the interval using a linear combination of Legendre polynomial functions. The coefficients are taken as appropriate roots of Chebyshev polynomials of the second kind, as has been proposed in reference [1]. A multi-resolution analysis is implemented and illustrated with analytical data and real-life signals from turbulent flow fields.
Many different algorithms have been suggested for computing the matrix exponential. In this paper, we put forward the idea of expanding in either Chebyshev, Legendre or Laguerre orthogonal polynomials. In order for these expansions to converge quickly, we cluster the eigenvalues into diagonal blocks and accelerate using shifting and scaling.
In this paper we generalize and specialize generating functions for classical orthogonal polynomials, namely Jacobi, Gegenbauer, Chebyshev and Legendre polynomials. We derive a generalization of the generating function for Gegenbauer polynomials through extension a two element sequence of generating functions for Jacobi polynomials. Specializations of generating functions are accomplished throu...
We determine the infinite sequences (ak) of integers that can be generated by polynomials with integral coefficients, in the sense that for each finite initial segment of length n there is an integral polynomial fn(x) of degree < n such that ak = fn(k) for k = 0, 1, . . . , n − 1. Let P be the set of such sequences and Π the additive group of all infinite sequences of integers. Then P is a subg...
A simple strategy for constructing a sequence of increasingly refined interpolation grids over the triangle or the tetrahedron is discussed with the goal of achieving uniform convergence and ensuring high interpolation accuracy. The interpolation nodes are generated based on a one-dimensional master grid comprised of the zeros of the Lobatto, Legendre, Chebyshev, and second-kind Chebyshev polyn...
We introduce a new and eecient Chebyshev-Legendre Galerkin method for elliptic problems. The new method is based on a Legendre-Galerkin formulation, but only the Chebyshev-Gauss-Lobatto points are used in the computation. Hence, it enjoys advantages of both the Legendre-Galerkin and Chebyshev-Galerkin methods.
The goal of this paper is to derive Hermite–Hadamard–Fejér-type inequalities for higher-order convex functions and a general three-point integral formula involving harmonic sequences polynomials w-harmonic functions. In special cases, estimates are derived various classical quadrature formulae such as the Gauss–Legendre Gauss–Chebyshev first second kind.
the main purpose of this article is to present an approximate solution for the two-dimensional nonlinear volterra integral equations using legendre orthogonal polynomials. first, the two-dimensional shifted legendre orthogonal polynomials are defined and the properties of these polynomials are presented. the operational matrix of integration and the product operational matrix are introduced. th...
Hammerstein-Wiener systems present a structure consisting of three serial cascade blocks. Two are static nonlinearities, which can be described with nonlinear functions. The third block represents linear dynamic component placed between the first two Some common model structures include rational-type transfer function, orthogonal rational functions (ORF), finite impulse response (FIR), autoregr...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید