نتایج جستجو برای: convex domination subdivision number

تعداد نتایج: 1225418  

2004
Joanna Raczek

The convex domination number and the weakly convex domination number are new domination parameters. In this paper we show that the decision problems of convex and weakly convex dominating sets are NP -complete for bipartite and split graphs. Using a modified version of Warshall algorithm we can verify in polynomial time whether a given subset of vertices of a graph is convex or weakly convex.

2012
M. Atapour S. M. Sheikholeslami L. Volkmann A. Khodkar

In a graph G, a vertex dominates itself and its neighbors. A subset S ⊆ V (G) is a 2-dominating set of G if S dominates every vertex of V (G) \ S at least twice. The 2-domination number γ2(G) is the minimum cardinality of a 2-dominating set of G. The 2-domination subdivision number sdγ2(G) is the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) in ...

Journal: :Discussiones Mathematicae Graph Theory 2015
Diana Avella-Alaminos Magda Dettlaff Magdalena Lemanska Rita Zuazua

The domination multisubdivision number of a nonempty graph G was defined in [3] as the minimum positive integer k such that there exists an edge which must be subdivided k times to increase the domination number of G. Similarly we define the total domination multisubdivision number msdγt(G) of a graph G and we show that for any connected graph G of order at least two, msdγt(G) ≤ 3. We show that...

Journal: :Graphs and Combinatorics 2014
Haoli Wang Xirong Xu Yuansheng Yang Baosheng Zhang

A subset S ⊆ V (G) is a double dominating set of G if S dominates every vertex of G at least twice. The double domination number dd(G) is the minimum cardinality of a double dominating set of G. The double domination subdivision number sddd(G) is the minimum number of edges that must be subdivided (where each edge in G can be subdivided at most once) in order to increase the double domination n...

Journal: :Australasian J. Combinatorics 2008
S. Benecke Christina M. Mynhardt

The domination subdivision number sdγ(G) of a graph G is the minimum number of edges that must be subdivided to increase the domination number of G. We present a simple characterization of trees with sdγ = 1 and a fast algorithm to determine whether a tree has this property.

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه بوعلی سینا - دانشکده علوم پایه 1391

abstract: in this thesis, we focus to class of convex optimization problem whose objective function is given as a linear function and a convex function of a linear transformation of the decision variables and whose feasible region is a polytope. we show that there exists an optimal solution to this class of problems on a face of the constraint polytope of feasible region. based on this, we dev...

Journal: :Australasian J. Combinatorics 2010
Magda Dettlaff Magdalena Lemanska

The weakly connected domination subdivision number sdγw(G) of a connected graph G is the minimum number of edges which must be subdivided (where each edge can be subdivided at most once) in order to increase the weakly connected domination number. The graph is strongγw-subdivisible if for each edge uv ∈ E(G) we have γw(Guv) > γw(G), where Guv is a graph G with subdivided edge uv. The graph is s...

2014
M. N. IRADMUSA Ebadollah S. Mahmoodian

For any k ∈ N, the k-subdivision of a graph G is a simple graph G 1 k , which is constructed by replacing each edge of G with a path of length k. In [Moharram N. Iradmusa, On colorings of graph fractional powers, Discrete Math., (310) 2010, No. 10-11, 1551-1556] the mth power of the n-subdivision of G has been introduced as a fractional power of G, denoted by G m n . In this regard, we investig...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید