نتایج جستجو برای: convex quadratic semidefinite optimization problem

تعداد نتایج: 1166619  

2000
Pablo A. Parrilo

In this paper, we present improved versions of the standard semidefinite relaxation for quadratic programming, that underlies many important results in robustness analysis and combinatorial optimization. It is shown that the proposed polynomial time convex conditions are at least as strong as the standard ones, and usually better, but at a higher computational cost. Several applications of the ...

2002
Barbara M. P. Fraticelli

(ABSTRACT) Despite recent advances in convex optimization techniques, the areas of discrete and continuous nonconvex optimization remain formidable, particularly when globally optimal solutions are desired. Most solution techniques, such as branch-and-bound, are enumerative in nature, and the rate of their convergence is strongly dependent on the accuracy of the bounds provided, and therefore, ...

2005
Paul J. Atzberger

These notes give an introduction to duality theory in the context of linear and positive semidefinite programming. These notes are based on material from Convex Analysis and Nonlinear Optimization by Borwein and Lewis and Numerical Optimization by Nocedal and Wright. Two examples are given to show how duality can be used. The first optimization application is to find the matrix in an affine fam...

Journal: :J. Global Optimization 2005
Kurt M. Anstreicher Samuel Burer

The standard quadratic program (QPS) is minx∈∆ xT Qx, where ∆ ⊂ <n is the simplex ∆ = {x ≥ 0 | ni=1 xi = 1}. QPS can be used to formulate combinatorial problems such as the maximum stable set problem, and also arises in global optimization algorithms for general quadratic programming when the search space is partitioned using simplices. One class of “d.c.” (for “difference between convex”) boun...

2008
Ingo Mierswa Katharina Morik

During the last years, kernel based methods proved to be very successful for many real-world learning problems. One of the main reasons for this success is the efficiency on large data sets which is a result of the fact that kernel methods like Support Vector Machines (SVM) are based on a convex optimization problem. Solving a new learning problem can now often be reduced to the choice of an ap...

Journal: :European Journal of Operational Research 2010
Jie Sun Su Zhang

We propose a modified alternate direction method for solving convex quadratically constrained quadratic semidefinite optimization problems. The method is a first-order method, therefore requires much less computational effort per iteration than the second-order approaches such as the interior point methods or the smoothing Newton methods. In fact, only a single inexact metric projection onto th...

2000
Sunyoung Kim Masakazu Kojima

A disadvantage of the SDP (semidefinite programming) relaxation method for quadratic and/or combinatorial optimization problems lies in its expensive computational cost. This paper proposes a SOCP (second-order-cone programming) relaxation method, which strengthens the lift-and-project LP (linear programming) relaxation method by adding convex quadratic valid inequalities for the positive semid...

2005
M. T. Çezik G. Iyengar

In this we paper we study techniques for generating valid convex constraints for mixed 0-1 conic programs. We show that many of the techniques developed for generating linear cuts for mixed 0-1 linear programs, such as the Gomory cuts, the lift-and-project cuts, and cuts from other hierarchies of tighter relaxations, extend in a straightforward manner to mixed 0-1 conic programs. We also show t...

Journal: :J. Global Optimization 2013
Didier Henrion Frédéric Messine

A small polygon is a convex polygon of unit diameter. We are interested in small polygons which have the largest area for a given number of vertices n. Many instances are already solved in the literature, namely for all odd n, and for n = 4, 6 and 8. Thus, for even n ≥ 10, instances of this problem remain open. Finding those largest small polygons can be formulated as nonconvex quadratic progra...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید