نتایج جستجو برای: coreective subcategory
تعداد نتایج: 1537 فیلتر نتایج به سال:
For a symmetric monoidal-closed category X and any object K, the category of K-Chu spaces is small-topological over X and small cotopological over X . Its full subcategory of M-extensive K-Chu spaces is topological over X when X is Mcomplete, for any morphism class M. Often this subcategory may be presented as a full coreflective subcategory of Diers’ category of affine K-spaces. Hence, in addi...
For an Artinian (n− 1)-Auslander algebra Λ with global dimension n(≥ 2), we show that if Λ admits a trivial maximal (n − 1)-orthogonal subcategory of modΛ, then Λ is a Nakayama algebra and the projective or injective dimension of any indecomposable module in modΛ is at most n− 1. As a result, for an Artinian Auslander algebra with global dimension 2, if Λ admits a trivial maximal 1-orthogonal s...
By Gelfand-Neumark duality, the category C∗Alg of commutative C∗algebras is dually equivalent to the category of compact Hausdorff spaces, which by Stone duality, is also dually equivalent to the category uba` of uniformly complete bounded Archimedean `-algebras. Consequently, C∗Alg is equivalent to uba`, and this equivalence can be described through complexification. In this article we study u...
A general framework for cluster tilting is set up by showing that any quotient of a triangulated category modulo a tilting subcategory (that is, a maximal oneorthogonal subcategory) carries an induced abelian structure. These abelian quotients turn out to be module categories of Gorenstein algebras of dimension at most one.
We prove that in an abelian category with enough projective objects, the extension subcategory of two covariantly finite subcategories is still covariantly finite. This extends a result by Sikko and Smalø. We also prove a triangulated version of the result. As applications, we obtain short proofs to a classical result by Ringel and a recent result by Krause and Solberg. 1. Main Theorems Let C b...
In this article we will build a universal imbedding of a regular HomLie triple system into a Lie algebra and show that the category of regular Hom-Lie triple systems is equivalent to a full subcategory of pairs of Z2graded Lie algebras and Lie algebra automorphism, then finally give some characterizations of this subcategory.
We put cluster tilting in a general framework by showing that any quotient of a triangulated category modulo a tilting subcategory (that is, a maximal one-orthogonal subcategory) carries an induced abelian structure. These abelian quotients turn out to be module categories of Gorenstein algebras of dimension at most one.
A general framework for cluster tilting is set up by showing that any quotient of a triangulated category modulo a tilting subcategory (that is, a maximal oneorthogonal subcategory) carries an induced abelian structure. These abelian quotients turn out to be module categories of Gorenstein algebras of dimension at most one.
Several methods for constructing left determined model structures are expounded. The starting point is Olschok’s work on locally presentable categories. We give sufficient conditions to obtain left determined model structures on a full reflective subcategory, on a full coreflective subcategory and on a comma category. An application is given by constructing a left determined model structure on ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید