نتایج جستجو برای: divisor graph
تعداد نتایج: 201076 فیلتر نتایج به سال:
For a commutative ring R, we can form the zero-divisor graph Γ(R) or the ideal-divisor graph ΓI(R) with respect to an ideal I of R. We consider the diameters of direct products of zero-divisor and ideal-divisor graphs.
Abstract. A divisor cordial labeling of a graph G with vertex set V is a bijection f from V to {1, 2,... | |} V such that an edge uv is assigned the label 1 if ( ) | ( ) f u f v or ( ) | ( ) f v f u and the label 0 otherwise, then number of edges labeled with 0 and the number of edges labeled with 1 differ by at most 1. A graph with a divisor cordial labeling is called a divisor cordial graph. ...
A divisor cordial labeling of a graph G with vertex set V is a bijection f from V to {1, 2, 3, . . .,|V|} such that if an edge uv is assigned the label 1 if f(u) divides f(v) or f(v) divides f(u) and 0 otherwise, then the number of edges labeled with 0 and the number of edges labeled with 1 differ by at most 1. If a graph has a divisor cordial labeling, then it is called divisor cordial graph. ...
A divisor cordial labeling of a graph G with vertex set V vertex G is a bijection f from V to {1, 2, 3, . . . |V|} such that an edge uv is assigned the label 1 if f(u) divides f(v) or f(v)divides f(u) and 0 otherwise, then the number of edges labeled with 0 and the number of edges labeled with 1 differ by at most 1. If a graph has a divisor cordial labeling, then it is called divisor cordial gr...
This work aims to introduce and study a new kind of divisor graph which is called idempotent graph, it denoted by . Two non-zero distinct vertices v1 v2 are adjacent if only , for some non-unit element We establish fundamental properties as well it’s connection with also planarity this graph.
In this paper, we verify the diameter of zero divisor graphs with respect to direct product. Keywords—Atomic lattice, complement of graph, diameter, direct product of lattices, 0-distributive lattice, girth, product of graphs, prime ideal, zero divisor graph.
This paper investigates properties of the zero-divisor graph of a commutative ring and its genus. In particular, we determine all isomorphism classes of finite commutative rings with identity whose zero-divisor graph has
Abstract. A sum divisor cordial labeling of a graph G with vertex set V is a bijection f from V to {1,2,...,| ( ) |} V G such that each edge uv assigned the label 1 if 2 divides ( ) ( ) f u f v + and 0 otherwise. Further, the number of edges labeled with 0 and the number of edges labeled with 1 differ by at most 1. A graph with a sum divisor cordial labeling is called a sum divisor cordial grap...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید