نتایج جستجو برای: dna gyrase a
تعداد نتایج: 13570797 فیلتر نتایج به سال:
Topoisomerase (topo) IV and gyrase are bacterial type IIA DNA topoisomerases essential for DNA replication and chromosome segregation that act via a transient double-stranded DNA break involving a covalent enzyme-DNA "cleavage complex." Despite their mechanistic importance, the DNA breakage determinants are not understood for any bacterial type II enzyme. We investigated DNA cleavage by Strepto...
DNA gyrase is an essential enzyme in bacteria, and its inhibition results in the disruption of DNA synthesis and, subsequently, cell death. The pyrrolamides are a novel class of antibacterial agents targeting DNA gyrase. These compounds were identified by a fragment-based lead generation (FBLG) approach using nuclear magnetic resonance (NMR) screening to identify low-molecular-weight compounds ...
A large number of Chinese herbal drugs (CHDs) exhibit antibacterial activities both in vivo and in vitro, but until now little is known regarding their inhibitory mechanisms. Bacterial DNA gyrase is a proven target for antibacterial agents. Aim of this study was to investigate the in-vitro inhibitory effect of methanol extracts of CHDs against supercoiling activity of bacterial DNA gyrase. Fift...
Treatment of the Escherichia coli DNA gyrase A protein with trypsin generates two large fragments which are stable to further digestion. The molecular masses of these fragments are 64 and 33 kDa, and they are shown to be derived from the N terminus and the C terminus of the A protein, respectively. These fragments could represent structural and/or functional domains within the A subunit of DNA ...
As only the type II topoisomerase is capable of introducing negative supercoiling, DNA gyrase is involved in crucial cellular processes. Although the other domains of DNA gyrase are better understood, the mechanism of DNA binding by the C-terminal domain of the DNA gyrase A subunit (GyrA-CTD) is less clear. Here, we investigated the DNA-binding sites in the GyrA-CTD of Mycobacterium tuberculosi...
DNA gyrase introduces negative supercoils into DNA in an ATP-dependent reaction. DNA supercoiling is catalyzed by a strand-passage mechanism, in which a T-segment of DNA is passed through the gap in a transiently cleaved G-segment. Strand passage requires the coordinated closing and opening of three protein interfaces in gyrase, the N-gate, DNA-gate, and C-gate. We show here that DNA binding to...
Microcin B17 is a 3.1-kDa bactericidal peptide; the putative target of this antibiotic is DNA gyrase. Microcin B17 has no detectable effect on gyrase-catalysed DNA supercoiling or relaxation activities in vitro and is unable to stabilise DNA cleavage in the absence of nucleotides. However, in the presence of ATP, or the non-hydrolysable analogue 5'-adenylyl beta,gamma-imidodiphosphate, microcin...
Xanthomonas albilineans produces a family of polyketide-peptide compounds called albicidins which are highly potent antibiotics and phytotoxins as a result of their inhibition of prokaryotic DNA replication. Here we show that albicidin is a potent inhibitor of the supercoiling activity of bacterial and plant DNA gyrases, with 50% inhibitory concentrations (40 to 50 nM) less than those of most c...
DNA gyrase is the only topoisomerase that can introduce negative supercoils into the DNA at the cost of ATP hydrolysis. Some but not all the steps of the topoisomerization reaction are understood clearly for both eukaryotic topoII and DNA gyrase. This study is an attempt to understand whether the B subunit of DNA gyrase binds to DNA directly, which may be central to the stimulation of its ATPas...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید