نتایج جستجو برای: ensemble clustering
تعداد نتایج: 144749 فیلتر نتایج به سال:
In this paper, we propose an ensemble clustering method for high dimensional data which uses FastMap projection to generate subspace component data sets. In comparison with popular random sampling and random projection, FastMap projection preserves the clustering structure of the original data in the component data sets so that the performance of ensemble clustering is improved significantly. W...
Clustering ensemble refers to combine a number of base clusterings for a particular data set into a consensus clustering solution. In this paper, we propose a novel self-supervised learning framework for clustering ensemble. Specifically, we treat the base clusterings as pseudo class labels and learn classifiers for each of them. By adding priors to the parameters of these classifiers, we captu...
Cluster ensemble has been shown to be an effective thought of improving the accuracy and stability of single clustering algorithms. It consists of generating a set of partition results from a same data set and combining them into a final one. In this paper, we develop a novel cluster ensemble method named Cluster Ensemble algorithm using the Binary k-means and Spectral Clustering (CEBKSC). By u...
This paper presents a novel color image quantization algorithm. This algorithm improves color image quantization stability and accuracy using clustering ensemble. In our approach, we firstly adopt manifold single k-means clusterings for the color image to form a preliminary ensemble committee. Then, in order to avoid inexplicit correspondence among clustering groups, we use the original color v...
Ensemble clustering is a recently evolving research direction in cluster analysis and has found several different application domains. In this work the complex ensemble clustering problem is reduced to the well-known Euclidean median problem by clustering embedding in vector spaces. The Euclidean median problem is solved by the Weiszfeld algorithm and an inverse transformation maps the Euclidea...
Over the past epoch a rampant amount of work has been done in the data clustering research under the unsupervised learning technique in Data mining. Furthermore several algorithms and methods have been proposed focusing on clustering different data types, representation of cluster models, and accuracy rates of the clusters. However no single clustering algorithm proves to be the most efficient ...
— Clustering ensemble is one of the most recent advances in unsupervised learning. It aims to combine the clustering results obtained using different algorithms or from different runs of the same clustering algorithm for the same data set, this is accomplished using on a consensus function, the efficiency and accuracy of this method has been proven in many works in literature. In the first part...
Fusion and ensemble is important technique of machine learning. Fusion fused the feature attribute of different classifier and improved the classification of binary classifier. Instead of that ensemble technique provide the facility of merge two individual classifier and improve the performance of both classifiers. The ensemble technique of classifier depends on number of nearer point of classi...
Adaptive tree structured clustering (ATSC) is our proposed divisive hierarchical clustering method that recursively divides a data set into 2 subsets using self-organizing feature map (SOM). In each partition, the data set is quantized by SOM and the quantized data is divided using agglomerative hierarchical clustering. ATSC can divide data sets regardless of data size in feasible time. On the ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید