نتایج جستجو برای: ensemble empirical mode decomposition

تعداد نتایج: 553616  

2013
Megha Agarwal

Empirical mode decomposition (EMD), a data analysis technique, is used to denoise non-stationary and non-linear processes. The method does not require any pre & post processing of signal and use of any specified basis functions. But EMD suffers from a problem called mode mixing. So to overcome this problem a new method known as Ensemble Empirical mode decomposition (EEMD) has been introduced. T...

Journal: :Advances in Adaptive Data Analysis 2013
Chih-Yu Kuo Shao-Kuan Wei Pi-Wen Tsai

Ensemble empirical mode decomposition (EEMD) is a noise-assisted data analysis method which decomposes a signal into a collection of intrinsic mode functions (IMFs). There nevertheless appears a multi-mode problem where signals with a similar timescale are decomposed into different IMF components. A possible solution to this problem is to recombine the multi-mode IMF components into a proper si...

2010
Kang-Ming Chang

A novel noise filtering algorithm based on ensemble empirical mode decomposition (EEMD) is proposed to remove artifacts in electrocardiogram (ECG) traces. Three noise patterns with different power--50 Hz, EMG, and base line wander--were embedded into simulated and real ECG signals. Traditional IIR filter, Wiener filter, empirical mode decomposition (EMD) and EEMD were used to compare filtering ...

2007
Jiafang Zhang Hai Huang Xiangxian Chen

The performance of the human-machine dialogue at in-car environment is considerably deteriorated by background noises and other disturbances. In this paper, the authors present an in-car speech enhancement (ICSE) method to improve quality of speech signals suffering the in-car noises. The method is based on a novel signal processing technology called the ensemble empirical mode decomposition (E...

Journal: :Advances in Adaptive Data Analysis 2009
Zhaohua Wu Norden E. Huang Xianyao Chen

A multi-dimensional ensemble empirical mode decomposition (MEEMD) for multidimensional data (such as images or solid with variable density) is proposed here. The decomposition is based on the applications of ensemble empirical mode decomposition (EEMD) to slices of data in each and every dimension involved. The final reconstruction of the corresponding intrinsic mode function (IMF) is based on ...

2012
Jun LI Wei GONG Yingying Ma

As an active remote sensing instrument, lidar provides a high spatial resolution vertical profile of aerosol optical properties. But the effective range and data reliability are often limited by various noises. Performing a proper denoising method will improve the quality of the signals obtained. The denoising method based on ensemble empirical mode decomposition (EEMD) is introduced, but the d...

2013
Youpeng Zhang Ting Zhang Jie Teng Hongsheng Su

Rolling bearing is an important part in mechanical system and faults occur frequently with vibration noise. Empirical mode decomposition (EMD) is a tool for nonlinear and non-stationary signals analysis. However, the major drawbacks of EMD are mode mixing problem, ensemble empirical mode decomposition (EEMD) provides a new tool for signal analysis, and it is an improved technique of EMD. In ord...

Journal: :Advances in Adaptive Data Analysis 2014
A. Neubauer Ana Maria Tomé Andreas Kodewitz Juan Manuel Górriz Carlos García Puntonet Elmar Wolfgang Lang

Positron emission tomography (PET) provides a functional imaging modality to detect signs of dementias in human brains. Two-dimensional empirical mode decomposition (2D-EMD) provides means to analyze such images. It extracts characteristic textures from these images which may be fed into powerful classifiers trained to group these textures into several classes depending on the problem at hand. ...

2014
Chi-Jie Lu Yuehjen E. Shao Zexuan Zhu

A hybrid forecasting model that integrates ensemble empirical model decomposition EEMD , and extreme learning machine ELM for computer products sales is proposed. The EEMD is a new piece of signal processing technology. It is based on the local characteristic time scales of a signal and could decompose the complicated signal into intrinsic mode functions IMFs . The ELM is a novel learning algor...

Journal: :Advances in Adaptive Data Analysis 2009
Zhaohua Wu Norden E. Huang

A new Ensemble Empirical Mode Decomposition (EEMD) is presented. This new approach consists of sifting an ensemble of white noise-added signal (data) and treats the mean as the final true result. Finite, not infinitesimal, amplitude white noise is necessary to force the ensemble to exhaust all possible solutions in the sifting process, thus making the different scale signals to collate in the p...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید