نتایج جستجو برای: fcm clustering

تعداد نتایج: 104974  

2010
Pawan Kumar Deepika Sirohi

Clustering is a primary data description method in data mining which group’s most similar data. The data clustering is an important problem in a wide variety of fields. Including data mining, pattern recognition, and bioinformatics. There are various algorithms used to solve this problem. This paper presents the comparison of the performance analysis of Fuzzy C mean (FCM) clustering algorithm a...

Journal: :iranian journal of fuzzy systems 2008
e. mehdizadeh s. sadi-nezhad r. tavakkoli-moghaddam

this paper presents an efficient hybrid method, namely fuzzy particleswarm optimization (fpso) and fuzzy c-means (fcm) algorithms, to solve the fuzzyclustering problem, especially for large sizes. when the problem becomes large, thefcm algorithm may result in uneven distribution of data, making it difficult to findan optimal solution in reasonable amount of time. the pso algorithm does find ago...

Journal: :Fuzzy Sets and Systems 2004
Miin-Shen Yang Pei-Yuan Hwang De-Hua Chen

This paper presents fuzzy clustering algorithms for mixed features of symbolic and fuzzy data. El-Sonbaty and Ismail proposed fuzzy c-means (FCM) clustering for symbolic data and Hathaway et al. proposed FCM for fuzzy data. In this paper we give a modi3ed dissimilarity measure for symbolic and fuzzy data and then give FCM clustering algorithms for these mixed data types. Numerical examples and ...

Journal: :JSW 2013
Hongfen Jiang Junfeng Gu Yijun Liu Feiyue Ye Haixu Xi Mingfang Zhu

Clustering algorithm is very important for data mining. Fuzzy c-means clustering algorithm is one of the earliest goal-function clustering algorithms, which has achieved much attention. This paper analyzes the lack of fuzzy C-means (FCM) algorithm and genetic clustering algorithm. Propose a hybrid clustering algorithm based on immune single genetic and fuzzy C-means. This algorithm uses the fuz...

2015
Ma Li Yang Li Suohai Fan Runzhu Fan

Image segmentation plays an important role in medical image processing. Fuzzy c-means (FCM) clustering is one of the popular clustering algorithms for medical image segmentation. However, FCM has the problems of depending on initial clustering centers, falling into local optimal solution easily, and sensitivity to noise disturbance. To solve these problems, this paper proposes a hybrid artifici...

2009
Yan Xu Toshihiro Nishimura

Segmentation in ultrasound images is challenging due to the interference from speckle noise and fuzziness of boundaries. In this paper, a segmentation scheme using fuzzy c-means (FCM) clustering incorporating both intensity and texture information of images is proposed to extract breast lesions in ultrasound images. Firstly, the nonlinear structure tensor, which can facilitate to refine the edg...

2010
VUDA SREENIVASA RAO

Data mining technology has emerged as a means for identifying patterns and trends from large quantities of data. Data mining is a computational intelligence discipline that contributes tools for data analysis, discovery of new knowledge, and autonomous decision making. Clustering is a primary data description method in data mining which group’s most similar data. The data clustering is an impor...

2010
Saeed Golian Bahram Saghafian Sara Sheshangosht Hossein Ghalkhani

Pattern recognition is the science of data structure and its classification. There are many classification and clustering methods prevalent in pattern recognition area. In this research, rainfall data in a region in Northern Iran are classified with natural breaks classification method and with a revised fuzzy c-means (FCM) algorithm as a clustering approach. To compare these two methods, the r...

2016
Kai Li Yan Gao

Fuzzy c-means (FCM) is an important clustering algorithm. However, it does not consider the impact of different feature on clustering. In this paper, we present a fuzzy clustering algorithm with the generalized entropy of feature weights FCM (GEWFCM). By introducing feature weights and adding regularized term of their generalized entropy, a new objective function is proposed in terms of objecti...

2006
Anil Kumar S. K. Ghosh V. K. Dadhwal

It is found that sub-pixel classifiers for classification of multi-spectral remote sensing data yield a higher accuracy. With this objective, a study has been carried out, where fuzzy set theory based sub-pixel classifiers have been compared with statistical based sub-pixel classifier for classification of multi-spectral remote sensing data.Although, a number of Fuzzy set theory based classifie...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید