نتایج جستجو برای: fractional partial differential equations
تعداد نتایج: 711403 فیلتر نتایج به سال:
In this article, the (G ′ /G)-expansion method has been implemented to find the travelling wave solutions of nonlinear evolution equations of fractional order. For this, the fractional complex transformation method has been used to convert fractional order partial differential equation to ordinary differential equation. Then, (G ′ /G)-expansion method has been implemented to celebrate the serie...
in this paper, first the properties of one and two-dimensional differential transforms are presented.next, by using the idea of differential transform, we will present a method to find an approximate solution fora volterra integro-partial differential equations. this method can be easily applied to many linear andnonlinear problems and is capable of reducing computational works. in some particu...
approximating the solution of differential equations of fractional order is necessary because fractional differential equations have extensively been used in physics, chemistry as well as engineering fields. in this paper with central difference approximation and newton cots integration formula, we have found approximate solution for a class of boundary value problems of fractional order. three...
Fractional order partial differential equations are generalizations of classical partial differential equations. Increasingly, these models are used in applications such as fluid flow, finance and others. In this paper we examine some practical numerical methods to solve a class of initialboundary value fractional partial differential equations with variable coefficients on a finite domain. We ...
a simple new closed form of the green function for axisymmetric magnetostatic problemsis found analytically in cylindrical coordinates. the result is verified by applying several examples.
We have introduced a new explicit numerical method, based on a discrete stochastic process, for solving a class of fractional partial differential equations that model reaction subdiffusion. The scheme is derived from the master equations for the evolution of the probability density of a sum of discrete time random walks. We show that the diffusion limit of the master equations recovers the fra...
in this paper, a high-order and conditionally stable stochastic difference scheme is proposed for the numerical solution of $rm ithat{o}$ stochastic advection diffusion equation with one dimensional white noise process. we applied a finite difference approximation of fourth-order for discretizing space spatial derivative of this equation. the main properties of deterministic difference schemes,...
In this paper, a new fractional sub-equation method is proposed for finding exact solutions of fractional partial differential equations (FPDEs) in the sense of modified Riemann-Liouville derivative. With the aid of symbolic computation, we choose the space-time fractional Zakharov-Kuznetsov-Benjamin-Bona-Mahony (ZKBBM) equation in mathematical physics with a source to illustrate the validity a...
We propose a new approach for solving fractional partial differential equations based on a nonlinear fractional complex transformation and the general Riccati equation and apply it to solve the nonlinear time fractional biological population model and the (4+1)-dimensional space-time fractional Fokas equation. As a result, some new exact solutions for them are obtained.This approach can be suit...
the aim of this work is to describe the qualitative behavior of the solution set of a givensystem of fractional differential equations and limiting behavior of the dynamical system or flow defined by the system of fractional differential equations. in order to achieve this goal, it is first necessary to develop the local theory for fractional nonlinear systems. this is done by the extension of ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید