نتایج جستجو برای: full adder
تعداد نتایج: 298836 فیلتر نتایج به سال:
The binary adder is the critical element in most digital circuit designs including digital signal processors (DSP) and microprocessor data path units. As such, extensive research continues to be focused on improving the power delay performance of the adder. This paper proposes a new method for implementing a low power full adder by means of a set of Gate Diffusion Input (GDI) cell based multipl...
This paper presents a new design for 14 transistor single bit full adder, implemented using five transistor XNOR/XOR cell and transmission gate multiplexer. For transmission gate multiplexer complementary gate control signals are required and in 14 transistor full Adder both XOR and XNOR signals are generated. XNOR/XOR cell shows high power consumption than single XNOR gate. So, 8 transistor fu...
Reversible circuits have applications in digital signal processing, computer graphics, quantum computation and cryptography. In this paper, a generalized k*k reversible gate family is proposed and a 3*3 gate of the family is discussed. Inverter, AND, OR, NAND, NOR, and EXOR gates can be realized by this gate. Implementation of a full-adder circuit using two such 3*3 gates is given. This full-ad...
In this paper a new area efficient, high-speed and ultra-low power 1-bit full adder cell is presented. The performance: power, time delay and power delay product (PDP) of the proposed adder cell has been analyzed in comparison with the four existent low-power, high-speed adders. The circuits being studied are optimized for energy efficiency at 0.18-μm CMOS process technology and intensive simul...
In most of the digital systems the full-adders are the basic and the fundamental components. Due to the increase in number of transistors on the chip and its shrinkage has made the power consumption to be more. This power consumption is due to the flow of current and causes the battery life to be reduced. Hence the need of low power designs is the primary requirement in the VLSI field. The full...
Recently, the influence of the silicon area on the delay time, power dissipation and the leakage current is a crucial issue when designing a full adder circuit. In this paper, an efficient full adder design referred to as 10-T is proposed. The new design utilized the use of XNOR gates instead of XOR in the full adder implementation and, as a result, the delay time and power dissipation are sign...
Micro-electronic devices are playing a very prominent role in electronic equipments which are used in daily life. For electronic equipment battery life is important. So, in order to reduce the power consumption we implement a Sleepy technique to the electronic circuits. Sleepy technique is also called as power gating technique. In the power gating structure, a circuit operates in two different ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید