نتایج جستجو برای: gauss kronecker curvature
تعداد نتایج: 54201 فیلتر نتایج به سال:
Conventional physical dogma, justified by the local success of Newtonian dynamics for particles, assigns a Euclidean metric with signature (plus, plus, plus) to the three spatial dimensions. Minimal surfaces are of zero mean curvature and negative Gauss curvature in a Euclidean space, which supports affine evolutionary processes. However, experimental evidence now indicates that the non-affine ...
The compositional representation of a Markov chain using Kronecker algebra, according to a compositional model representation as a superposed generalized stochastic Petri net or a stochastic automata network, has been studied for a while. In this paper we describe a Kronecker expression and associated data structures, that allows to handle nets with synchronization over activities of different ...
We study the mean curvature flow of complete space-like submanifolds in pseudo-Euclidean space with bounded Gauss image, as well as that of complete submanifolds in Euclidean space with convex Gauss image. By using the confinable property of the Gauss image under the mean curvature flow we prove the long time existence results in both cases. We also study the asymptotic behavior of these soluti...
We obtain a gradient estimate for the Gauss maps from complete spacelike constant mean curvature hypersurfaces in Minkowski space into the hyperbolic space. As applications, we prove a Bernstein theorem which says that if the image of the Gauss map is bounded from one side, then the spacelike constant mean curvature hypersurface must be linear. This result extends the previous theorems obtained...
In this paper, we survey recent results on Gauss-Bonnet-Chern formulae and related issues for closed Riemannian manifolds with variable curvature. Among other things, we address the following problem: “if M is an oriented 2n-dimensional closed manifold with non-positive curvature, then is it true that its Euler number χ(M) satisfies the inequality (−1)χ(M) ≥ 0?” We will present some partial ans...
LetX be a compact, strictly convex C-hypersurface in the (n+1)-dimensional Euclidean space R. The Gauss map ofX maps the hypersurface one-to-one and onto the unit n-sphere S. One may parametrize X by the inverse of the Gauss map. Consequently, the Gauss curvature can be regarded as a function on S. The classical Minkowski problem asks conversely when a positive function K on S is the Gauss curv...
Second-order optimization methods such as natural gradient descent have the potential to speed up training of neural networks by correcting for the curvature of the loss function. Unfortunately, the exact natural gradient is impractical to compute for large models, and most approximations either require an expensive iterative procedure or make crude approximations to the curvature. We present K...
Let K be a convex body in R. A random polytope is the convex hull [x1, ..., xn] of finitely many points chosen at random in K. E(K,n) is the expectation of the volume of a random polytope of n randomly chosen points. I. Bárány showed that we have for convex bodies with C3 boundary and everywhere positive curvature c(d) lim n→∞ vold(K)− E(K,n) ( vold(K) n ) 2 d+1 = ∫ ∂K κ(x) 1 d+1 dμ(x) where κ(...
We give an estimate of the Gauss curvature for minimal surfaces in Rm whose Gauss map omits more than m(m + 1)/2 hyperplanes in P(C).
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید