نتایج جستجو برای: gaussian mixture model gmm
تعداد نتایج: 2220569 فیلتر نتایج به سال:
Most of current state-of-the-art speaker verification (SV) systems use Gaussian mixture model (GMM) to represent the universal background model (UBM) and the speaker models (SM). For an SV system that employs log-likelihood ratio between SM and UBM to make the decision, its computational efficiency is largely determined by the GMM computation. This paper attempts to speedup GMM computation by c...
Point-of-Interest (POI) recommendation is a significant service for location-based social networks (LBSNs). It recommends new places such as clubs, restaurants, and coffee bars to users. Whether recommended locations meet users’ interests depends on three factors: user preference, social influence, and geographical influence. Hence extracting the information from users’ check-in records is the ...
Speaker recognition systems frequently use GMM-MAP method for modeling speakers. This method represents the speaker using a Gaussian mixture. However, in this mixture not all Gaussian components are truly representative of the speaker. In order to remove the model redundancy, this work proposes a Gaussian selection method to achieve a new GMM model only with the more representative Gaussian com...
Volume representations of blood vessels acquired by 3D rotational angiography are very suitable for diagnosing a stenosis or an aneurysm. For optimal treatment, physicians need to know the shape of the diseased vessel parts. Binary segmentation by thresholding is the first step in our shape extraction procedure. Assuming a twofold Gaussian mixture model (GMM), the model parameters (and thus the...
In this paper, we present a speech enhancement technique based on the ambient noise classification that incorporates the Gaussian mixture model (GMM). The principal parameters of the statistical modelbased speech enhancement algorithm such as the weighting parameter in the decision-directed (DD) method and the long-term smoothing parameter of the noise estimation, are set according to the class...
The performance of K-means and Gaussian mixture model (GMM) clustering depends on the initial guess of partitions. Typically, clus∗corresponding author
This paper presents a new approach to modeling speech spectra and pitch for text-independent speaker identification using Gaussian mixture models based on multi-space probability distribution (MSD-GMM). The MSD-GMM allows us to model continuous pitch values for voiced frames and discrete symbols representing unvoiced frames in a unified framework. Spectral and pitch features are jointly modeled...
Gaussian Mixture Model (GMM) with Fuzzy c-means attempts to classify signals into speech and music. Feature extraction is done before classification. The classification accuracy mainly relays on the strength of the feature extraction techniques. Simple audio features such as Time domain and Frequency domain are adopted. The time domain features are Zero Crossing Rate (ZCR) and Short Time Energy...
The HMM (Hidden Markov Model) is a probabilistic model of the joint probability of a collection of random variables with both observations and states. The GMM (Gaussian Mixture Model) is a finite mixture probability distribution model. Although the two models have a close relationship, they are always discussed independently and separately. The EM (Expectation-Maximum) algorithm is a general me...
Relevance Feedback (RF) has become a powerful technique in content-based image retrieval. Most RF methods assume that positive images follow the single Gaussian distribution, which is not sufficient to model the actual distribution of images due to the gap between the semantic concept and low-level features. In this paper, Gaussian mixture model (GMM) is applied to represent the distribution of...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید