نتایج جستجو برای: generalized jacobi dunkl translation
تعداد نتایج: 304140 فیلتر نتایج به سال:
Abstract We investigate some spectral properties of a second order differential-difference operator $$J_{\alpha ,\beta }$$ J α , β on $$L^2((-\pi ,\pi ),d\mu _{\alpha , \beta })$$ L <mm...
commutative properties of four-dimensional generalized symmetric pseudo-riemannian manifolds were considered. specially, in this paper, we studied skew-tsankov and jacobi-tsankov conditions in 4-dimensional pseudo-riemannian generalized symmetric manifolds.
Commutative properties of four-dimensional generalized symmetric pseudo-Riemannian manifolds were considered. Specially, in this paper, we studied Skew-Tsankov and Jacobi-Tsankov conditions in 4-dimensional pseudo-Riemannian generalized symmetric manifolds.
Based on the theory of Dunkl operators, this paper presents a general concept of multivariable Hermite polynomials and Hermite functions which are associated with finite reflection groups on R . The definition and properties of these generalized Hermite systems extend naturally those of their classical counterparts; partial derivatives and the usual exponential kernel are here replaced by Dunkl...
We study an extension of the classical Paley-Wiener space structure, which is based on bilinear expansions of integral kernels into biorthogonal sequences of functions. The structure includes both sampling expansions and FourierNeumann type series as special cases. Concerning applications, several new results are obtained. From the Dunkl analogue of Gegenbauer’s expansion of the plane wave, we ...
We study an extension of the classical Paley-Wiener space structure, which is based on bilinear expansions of integral kernels into biorthogonal sequences of functions. The structure includes both sampling expansions and Fourier-Neumann type series as special cases. Concerning applications, several new results are obtained. From the Dunkl analogue of Gegenbauer’s expansion of the plane wave, we...
We study the Sobolev spaces of exponential type associated with the Dunkl-Bessel Laplace operator. Some properties including completeness and the imbedding theorem are proved. We next introduce a class of symbols of exponential type and the associated pseudodifferential-difference operators, which naturally act on the generalized Dunkl-Sobolev spaces of exponential type. Finally, using the theo...
The aim of this paper is to prove new quantitative uncertainty principle for the generalized Fourier transform connected with a Dunkl type operator on the real line. More precisely we prove An Lp-Lq-version of Morgan's theorem.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید