Let X be a connected normal complex space of dimension n ≥ 2 which is (n − 1)-complete, and let π : M → X be a resolution of singularities. By use of Takegoshi’s generalization of the Grauert-Riemenschneider vanishing theorem, we deduce H cpt(M,O) = 0, which in turn implies Hartogs’ extension theorem on X by the ∂-technique of Ehrenpreis.