نتایج جستجو برای: hashtag recommendation
تعداد نتایج: 34747 فیلتر نتایج به سال:
Twitter is a micro-blogging platform where the users can be social, informational or both. In certain cases, users generate tweets that have no "hashtags" or "@mentions"; we call it an orphaned tweet. The user will be more interested to find more "context" of an orphaned tweet presumably to engage with his/her friend on that topic. Finding context for an Orphaned tweet manually is challenging b...
Hashtags in twitter are used to track events, topics and activities. Correlated hashtag graph represents contextual relationships among these hashtags. Maximum clusters in the correlated hashtag graph can be contextually meaningful hashtag groups. In order to track the changes of the clusters and understand these hashtag groups, the hashtags in a cluster are categorized into two types: stable c...
Twitter has become a rich source of people’s opinions about a variety of topics, such as their daily life, and current news. Twitter’s retweeting and mentioning mechanisms enable users to disseminate information broadly. In this study, we investigate the effects of community-based and context-based features on the users’ information adoption and diffusion patterns in Twitter. Community-based fe...
We address the problem of real-time recommendation of streaming Twitter hashtags to an incoming stream of news articles. The technical challenge can be framed as large scale topic classification where the set of topics (i.e., hashtags) is huge and highly dynamic. Our main applications come from digital journalism, e.g., for promoting original content to Twitter communities and for social indexi...
Twitter data is extremely noisy – each tweet is short, unstructured and with informal language, a challenge for current topic modeling. On the other hand, tweets are accompanied by extra information such as authorship, hashtags and the user-follower network. Exploiting this additional information, we propose the Twitter-Network (TN) topic model to jointly model the text and the social network i...
Automatic hashtag segmentation is used when analysing twitter data, to associate hashtag terms to those used in common language. The most common form of hashtag segmentation uses a dictionary with a probability distribution over the dictionary terms, constructed from sample texts specific to the given hashtag domain. The language used in Twitter is different to the common language found in publ...
Predicting the popularity dynamics of Twitter hashtags has a broad spectrum of applications. Existing works have primarily focused on modeling the popularity of individual tweets rather than the underlying hashtags. As a result, they fail to consider several realistic factors contributing to hashtag popularity. In this paper, we propose Large Margin Point Process (LMPP), a probabilistic framewo...
We enhance the accuracy of the currently available semantic hashtag clustering method, which leverages hashtag semantics extracted from dictionaries such as Wordnet and Wikipedia. While immune to the uncontrolled and often sparse usage of hashtags, the current method distinguishes hashtag semantics only at the word level. Unfortunately, a word can have multiple senses representing the exact sem...
Temporal variations of text are usually ignored in NLP applications. However, text use changes with time, which can affect many applications. In this paper we model periodic distributions of words over time. Focusing on hashtag frequency in Twitter, we first automatically identify the periodic patterns. We use this for regression in order to forecast the volume of a hashtag based on past data. ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید