نتایج جستجو برای: heyting algebras regularity

تعداد نتایج: 65739  

2011
Aldo V. Figallo Gustavo Pelaitay

In 1982, L. Iturrioz introduced symmetrical Heyting algebras of order n (or SHnalgebras). In this paper, we define and study tense SHn-algebras namely, SHnalgebras endowed with two tense operators. These algebras constitute a generalization of tense Łukasiewicz-Moisil algebras. Our main interest is the duality theory for tense SHn-algebras. In order to do this, we requiere Esakia’s duality for ...

Journal: :Fuzzy Sets and Systems 2003
Adriana Galli Gonzalo E. Reyes Marta Sagastume

We extend Makkai’s proof of strong amalgamation (push-outs of monos along arbitrary maps are monos) from the category of Heyting algebras to a class which includes the categories of symmetric bounded distributive lattices, symmetric Heyting algebras, Heyting modal S4-algebras, Heyting modal bi-S4-albegras, and Lukasiewicz n-valued algebras. We also extend and improve Pitt’s proof that strong am...

Journal: :journal of sciences islamic republic of iran 0

motivated by an arens regularity problem, we introduce the concepts of matrix banach space and matrix banach algebra. the notion of matrix normed space in the sense of ruan is a special case of our matrix normed system. a matrix banach algebra is a matrix banach space with a completely contractive multiplication. we study the structure of matrix banach spaces and matrix banach algebras. then we...

Journal: :Order 2006
Guram Bezhanishvili Mai Gehrke Ray Mines Patrick J. Morandi

We show that the profinite completions and canonical extensions of bounded distributive lattices and of Boolean algebras coincide. We characterize dual spaces of canonical extensions of bounded distributive lattices and of Heyting algebras in terms of Nachbin order-compactifications. We give the dual description of the profinite completion ̂ H of a Heyting algebra H, and characterize the dual sp...

2006
Guram Bezhanishvili Revaz Grigolia

We show that for a variety V of Heyting algebras the following conditions are equivalent: (1) V is locally finite; (2) the V-coproduct of any two finite V-algebras is finite; (3) either V coincides with the variety of Boolean algebras or finite V-copowers of the three element chain 3 ∈ V are finite. We also show that a variety V of Heyting algebras is generated by its finite members if, and onl...

Journal: :SIAM J. Discrete Math. 2016
Luca Ferrari

We investigate a natural Heyting algebra structure on the set of Dyck paths of the same length. We provide a geometrical description of the operations of pseudocomplement and relative pseudocomplement, as well as of regular elements. We also find a logic-theoretic interpretation of such Heyting algebras, which we call Dyck algebras, by showing that they are the algebraic counterpart of a certai...

2014
Hanamantagouda P. Sankappanavar

This paper is the first of a two part series. In this paper, we first prove that the variety of dually quasi-De Morgan Stone semi-Heyting algebras of level 1 satisfies the strongly blended ∨-De Morgan law introduced in [20]. Then, using this result and the results of [20], we prove our main result which gives an explicit description of simple algebras(=subdirectly irreducibles) in the variety o...

2015
Gaëtan Gilbert Olivier Hermant

Usual normalization by evaluation techniques have a strong relationship with completeness with respect to Kripke structures. But Kripke structures is not the only semantics that ts intuitionistic logic: Heyting algebras are a more algebraic alternative. In this paper, we focus on this less investigated area: how completeness with respect to Heyting algebras generate a normalization algorithm fo...

2007
Bob Coecke

Via the introduction of (infinitary) disjunctions on any complete lattice while inheriting the meet as a conjunction, we construct a bijective correspondence (up to isomorphism) between complete lattices L and complete Heyting algebras DI(L) equipped with a so called disjunctive join dense closure operator RL. If L is itself a complete Heyting algebra then DI(L) ∼= L and RL = idDI(L). Ortholatt...

2015
Gaëtan Gilbert Olivier Hermant

Usual normalization by evaluation techniques have a strong relationship with completeness with respect to Kripke structures. But Kripke structures is not the only semantics that ts intuitionistic logic: Heyting algebras are a more algebraic alternative. In this paper, we focus on this less investigated area: how completeness with respect to Heyting algebras generate a normalization algorithm fo...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید