نتایج جستجو برای: hill climbing algorithm
تعداد نتایج: 776671 فیلتر نتایج به سال:
This paper presents an Improved Memetic Algorithm (IMA) designed to compute near-optimal solutions for the antibandwidth problem. It incorporates two distinguishing features: an efficient heuristic to generate a good quality initial population and a local search operator based on a Stochastic Hill Climbing algorithm. The most suitable combination of parameter values for IMA is determined by emp...
The Denclue algorithm employs a cluster model based on kernel density estimation. A cluster is defined by a local maximum of the estimated density function. Data points are assigned to clusters by hill climbing, i.e. points going to the same local maximum are put into the same cluster. A disadvantage of Denclue 1.0 is, that the used hill climbing may make unnecessary small steps in the beginnin...
C4.5 algorithm is the most widely used algorithm in the decision trees so far and obviously the most popular heuristic function is gain ratio. This heuristic function has a serious disadvantage – towards dealing with irrelevant featured data sources. The hill climbing is a machine learning technique used in searching. It has good searching mechanism. Considering the relationship between hill cl...
Consider the problem of control selection in complex dynamical and environmental scenarios where model predictive control (MPC) proves particularly effective. As the performance of MPC is highly dependent on the efficiency of its incorporated search algorithm, this work examined hill climbing as an alternative to traditional systematic or random search algorithms. The relative performance of a ...
Binary descriptors of image patches provide processing speed advantages and require less storage than methods that encode the patch appearance with a vector of real numbers. We provide evidence that, despite its simplicity, a stochastic hill climbing descriptor construction process defeats recently proposed alternatives on a standard discriminative power benchmark. The method is easy to impleme...
First-order learning systems (e.g., FOlL, FOCL, FORTE) generally rely on hill-climbing heuristics in order to avoid the combinatorial explosion inherent in learning first-order concepts. However, hill-climbing leaves these systems vulnerable to local maxima and local plateaus. We present a method, called relational pathfinding, which has proven highly effective in escaping local maxima and cros...
First-order learning systems (e.g., FOIL, FOCL, FORTE) generally rely on hill-climbing heuristics in order to avoid the combinatorial explosion inherent in learning first-order concepts. However, hill-climbing leaves these systems vulnerable to local maxima and local plateaus. We present a method, called relational pathfinding, which has proven highly effective in escaping local maxima and cros...
............................................................................................................. iv Introduction ........................................................................................................ 1 Background ........................................................................................................ 6 Proposed Methodology ............................
This paper presents techniques to integrate boundary overlap into concept assignment using Plausible Reasoning. Heuristic search techniques such as Hill climbing and Genetic Algorithms are investigated. A new fitness measure appropriate for overlapping concept assignment is introduced. The new algorithms are compared to randomly generated results and the Genetic Algorithm is shown to be the bes...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید