نتایج جستجو برای: hno sensing
تعداد نتایج: 125714 فیلتر نتایج به سال:
The gas phase and aqueous thermochemistry and reactivity of nitroxyl (nitrosyl hydride, HNO) were elucidated with multiconfigurational self-consistent field and hybrid density functional theory calculations and continuum solvation methods. The pK(a) of HNO is predicted to be 7.2 +/- 1.0, considerably different from the value of 4.7 reported from pulse radiolysis experiments. The ground-state tr...
The first near-infrared fluorescent turn-on sensor for the detection of nitroxyl (HNO), the one-electron reduced form of nitric oxide (NO), is reported. The new copper-based probe, CuDHX1, contains a dihydroxanthene (DHX) fluorophore and a cyclam derivative as a Cu(II) binding site. Upon reaction with HNO, CuDHX1 displays a five-fold fluorescence turn-on in cuvettes and is selective for HNO ove...
Phosphine-based detection strategies for both nitroxyl (HNO) and S-nitrosothiols (RSNO) were investigated and compared. Phosphorus NMR studies show that azaylides derived from HNO or organic RSNO efficiently participate in subsequent reductive ligation required for fluorescence generation in properly substituted substrates. S-Azaylides derived from biological RSNO containing free amine and carb...
Metallonitrosyl complexes are promising as nitric oxide (NO) donors for the treatment of cardiovascular, endothelial, and pathogenic diseases, as well as cancer. Recently, the reduced form of NO(-) (protonated as HNO, nitroxyl, azanone, isoelectronic with O2) has also emerged as a candidate for therapeutic applications including treatment of acute heart failure and alcoholism. Here, we show tha...
Favaloro JL, Kemp-Harper BK. Redox variants of NO (NO and HNO) elicit vasorelaxation of resistance arteries via distinct mechanisms. Am J Physiol Heart Circ Physiol 296: H1274–H1280, 2009; doi:10.1152/ajpheart.00008.2009.—The free radical form of nitric oxide (NO ) is a well-known mediator of vascular tone. What is not so well recognized is that NO exists in several different redox forms. There...
It is now thought that NO* (nitric oxide) and its redox congeners may play a role in the physiological regulation of mitochondrial function. The inhibition of cytochrome c oxidase by NO* is characterized as being reversible and oxygen dependent. In contrast, peroxynitrite, the product of the reaction of NO* with superoxide, irreversibly inhibits several of the respiratory complexes. However, li...
در کار حاضر جزئیات سازوکار واکنش¬های hso+hs، hso+oh، hso+1o2، hno+o2 و hno+hno مورد بررسی قرار خواهد گرفت. کلیه بهینه سازی ساختارها با استفاده از روش محاسباتی dft در سطح lyp3b و یا با روش 2mp به همراه مجموعه پایه¬های 6-311++g(2df-p)، 6-311++g(3df-3pd) و ztvp-cc aug-صورت گرفته. در مرحله بعد برای محاسبه دقیق¬تر انرژی نسبی، از روش ccsd(t) به ¬صورتsingle point استفاده شده¬است. همچنین روش irc وجود ا...
Nitroxyl (HNO), the reduced and protonated form of nitric oxide (NO·), confers unique physiological effects including vasorelaxation and enhanced cardiac contractility. These features have spawned current pharmaceutical development of HNO donors as heart failure therapeutics. HNO interacts with selective redox sensitive cysteines to effect signaling but is also proposed to activate soluble guan...
Nitroxyl (HNO), the redox congener of nitric oxide, has numerous vasoprotective actions including an ability to induce vasodilation and inhibit platelet aggregation. Given HNO is resistant to scavenging by superoxide and does not develop tolerance, we hypothesised that HNO would retain its in vivo vasodilatory action in the setting of hypertension. The in vitro and in vivo vasodilator propertie...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید