نتایج جستجو برای: independent dominating set
تعداد نتایج: 1069780 فیلتر نتایج به سال:
A subset X of the vertex set of a graph G is a secure dominating set of G if X is a dominating set of G and if, for each vertex u not in X, there is a neighbouring vertex v of u in X such that the swap set (X − {v}) ∪ {u} is again a dominating set of G. The secure domination number of G is the cardinality of a smallest secure dominating set of G. A graph G is p-stable if the largest arbitrary s...
Let ir(G), γ(G), i(G), β0(G), Γ(G) and IR(G) be the irredundance number, the domination number, the independent domination number, the independence number, the upper domination number and the upper irredundance number of a graph G, respectively. In this paper we show that for any integers k1, k2, k3, k4, k5 there exists a cubic graph G satisfying the following conditions: γ(G)−ir(G) ≥ k1, i(G)−...
A set D of vertices in a graph G is 2-dominating if every vertex not in D has at least two neighbors in D and locating-dominating if for every two vertices u, v not in D, the sets N(u) ∩ D and N(v) ∩ D are non-empty and different. The minimum cardinality of a 2-dominating set (locatingdominating set) is denoted by γ2(G) (γL(G)). It is known that every tree T with n ≥ 2 vertices, leaves, s suppo...
A dominating set S of a graph G is a global (strong) defensive alliance if for every vertex v ∈ S, the number of neighbors v has in S plus one is at least (greater than) the number of neighbors it has in V \ S. The dominating set S is a global (strong) offensive alliance if for every vertex v ∈ V \ S, the number of neighbors v has in S is at least (greater than) the number of neighbors it has i...
A k-dominating set is a set D k V such that every vertex i 2 V nD k has at least k i neighbours in D k. The k-domination number k (G) of G is the cardinality of a smallest k-dominating set of G. For k 1 = ::: = k n = 1, k-domination corresponds to the usual concept of domination. Our approach yields an improvement of an upper bound for the domination number found then the conception of k-domina...
A dominating set S of a graph G is a locating-dominating-set, LD-set for short, if every vertex v not in S is uniquely determined by the set of neighbors of v belonging to S. Locating-dominating sets of minimum cardinality are called LDcodes and the cardinality of an LD-code is the location-domination number, λ(G). An LD-set S of a graph G is global if it is an LD-set for both G and its complem...
Let G = (V,E) be a graph. A set S ⊆ V is a restrained dominating set if every vertex in V − S is adjacent to a vertex in S and to a vertex in V − S. The restrained domination number of G, denoted by γr(G), is the minimum cardinality of a restrained dominating set of G. A unicyclic graph is a connected graph that contains precisely one cycle. We show that if U is a unicyclic graph of order n, th...
Let G = (V,E) be a graph. A set S ⊆ V is a restrained dominating set if every vertex not in S is adjacent to a vertex in S and to a vertex in V − S. The restrained domination number of G, denoted by γr(G), is the smallest cardinality of a restrained dominating set of G. It is known that if T is a tree of order n, then γr(T ) ≥ d(n+2)/3e. In this note we provide a simple constructive characteriz...
Let G be a graph. A total dominating set of G is a set S of vertices of G such that every vertex is adjacent to at least one vertex in S. The total domatic number of a graph is the maximum number of total dominating sets which partition the vertex set of G. In this paper we would like to characterize the cubic graphs with total domatic number at least two.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید