Let A be a positive (semidefinite) bounded linear operator on complex Hilbert space $$\big ({\mathcal {H}}, \langle \cdot , \rangle \big )$$ ( H ? · ? ) . The semi-inner product induced by is defined $${\langle x, y\rangle }_A := Ax, $$ x y : = for all $$x, y\in {\mathcal {H}}$$ ? and defines seminorm $${\Vert \Vert }_A$$ ? $${\mathcal This makes into semi-Hilbert space. For $$p\in [1,+\infty p...