نتایج جستجو برای: jordan delta double derivation
تعداد نتایج: 338083 فیلتر نتایج به سال:
the aim of this paper is to introduce and study a new concept ofstrong double $(a)_ {delta}$-convergent sequence offuzzy numbers with respect to an orlicz function and also someproperties of the resulting sequence spaces of fuzzy numbers areexamined. in addition, we define the double$(a,delta)$-statistical convergence of fuzzy numbers andestablish some connections between the spaces of stron...
let $mathcal{a}$ be a banach algebra and $mathcal{m}$ be a banach $mathcal{a}$-bimodule. we say that a linear mapping $delta:mathcal{a} rightarrow mathcal{m}$ is a generalized $sigma$-derivation whenever there exists a $sigma$-derivation $d:mathcal{a} rightarrow mathcal{m}$ such that $delta(ab) = delta(a)sigma(b) + sigma(a)d(b)$, for all $a,b in mathcal{a}$. giving some facts concerning general...
Let A be an algebra and let X be an A-bimodule. A C−linear mapping d : A → X is called a generalized Jordan derivation if there exists a Jordan derivation (in the usual sense) δ : A → X such that d(a) = ad(a) + δ(a)a for all a ∈ A. The main purpose of this paper to prove the Hyers-Ulam-Rassias stability and superstability of the generalized Jordan derivations.
Let R be an associative ring not necessarily with identity element. For any x, y ∈ R. Recall that R is prime if xRy = 0 implies x = 0 or y = 0, and is semiprime if xRx = 0 implies x = 0. Given an integer n ≥ 2, R is said to be n−torsion free if for x ∈ R, nx = 0 implies x = 0.An additive mapping d : R → R is called a derivation if d(xy) = d(x)y + yd(x) holds for all x, y ∈ R, and it is called a...
For a ring endomorphism $alpha$ and an $alpha$-derivation $delta$, we introduce a concept, so called skew $pi$-Armendariz ring, that is a generalization of both $pi$-Armendariz rings, and $(alpha,delta)$-compatible skew Armendariz rings. We first observe the basic properties of skew $pi$-Armendariz rings, and extend the class of skew $pi$-Armendariz rings through various ring extensions. We nex...
A ring $R$ with an automorphism $sigma$ and a $sigma$-derivation $delta$ is called $delta$-quasi-Baer (resp., $sigma$-invariant quasi-Baer) if the right annihilator of every $delta$-ideal (resp., $sigma$-invariant ideal) of $R$ is generated by an idempotent, as a right ideal. In this paper, we study Baer and quasi-Baer properties of skew PBW extensions. More exactly, let $A=sigma(R)leftlangle x...
let h be an infinite--dimensional hilbert space and k(h) be the set of all compact operators on h. we will adopt spectral theorem for compact self-adjoint operators, to investigate of higher derivation and higher jordan derivation on k(h) associated with the following cauchy-jencen type functional equation 2f(frac{t+s}{2}+r)=f(t)+f(s)+2f(r) for all t,s,rin k(h).
Let R be a ring and U be a Lie ideal of R. Suppose that σ, τ are endomorphisms of R. A family D = {d n } n ∈ N of additive mappings d n :R → R is said to be a (σ,τ)- higher derivation of U into R if d 0 = I R , the identity map on R and [Formula: see text] holds for all a, b ∈ U and for each n ∈ N. A family F = {f n } n ∈ N of additive mappings f n :R → R is said to be a generalized (σ,τ)- high...
A dynamic stability criterion for elastic–plastic structures under near-fault ground motions is derived in closed form. A negative post-yield stiffness is treated in order to consider the P-delta effect. The double impulse is used as a substitute of the fling-step near-fault ground motion. Since only the free vibration appears under such double impulse, the energy approach plays a critical role...
If pi: A-->B is a surjective morphism between separable C(*)-algebras, then for each derivation delta of B there is a derivation [unk]delta of A such that pi([unk]delta(a)) for each a in A.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید